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Abstract

Advances in semiconductor technology constitute a new physical system to investigate
quantum optics in a solid state environment: a quantum dot strongly coupled to a single
cavity mode. In the strong coupling regime, the electron-photon coupling dominates over
dissipation processes and Rabi oscillations occur. This thesis focuses on the theoretical in-
vestigation of the strong coupling regime in the single-photon limit, in which few photons
interact with a single quantum dot and the combined electron and photon dynamics is
strongly correlated. Typical theoretical frameworks rely on factorization approaches, such
as the cluster expansion scheme. However, for strongly correlated dynamics, standard fac-
torization schemes fail and new theoretical frameworks become necessary. The work in
hand develops two novel methods within the equation of motion approach to solve the
complete quantum kinetics without a factorization of the electron-photon interaction, in-
cluding non-Markovian features, and hereby bridges this gap in the theoretical description
of semiconductor quantum optics.

First, for quantum dots with a fixed number of electrons, a mathematical induction method
for the combined electron, photon and phonon dynamics is introduced. This method is nu-
merically solvable up to an arbitrary accuracy. Surprisingly, for an initial thermal photon
distribution in the cavity the electron-phonon interaction leads to a counter-intuitive re-
duction in the intensity-intensity correlation function. The classical photon distribution
evolves into a nonclassical one. In addition to the well-known anti-crossing for zero de-
tuning, more anti-crossings and signatures for strong coupling are found for detunings of
a multiple of the LO-phonon energy below and above the band gap energy. Within this
LO-phonon cavity feeding, modified Rabi oscillations exhibit anharmonicities for elevated
temperatures. Assuming two electrons in the quantum dot, the polarization entanglement
of photons generated by a biexciton cascade is theoretically investigated in the weak and
strong coupling regime. Via an effective multi-phonon Hamiltonian approach, temperature
dependent relaxation rates from the QD to the wetting layer states are taken into account.
For elevated temperatures T ≥ 120 K, these LO-phonon relaxation rates in GaAs result in a
vanishing degree of entanglement. This calculation is in agreement with recent experiments.

Focusing on quantum dots, in which the number of electrons and holes is not fixed due to
the presence of a wetting layer/carrier reservoir, many-particle correlations occur and are
treated within the photon-probability cluster expansion approach. This generalized cluster
expansion is a reliable theoretical framework to study the optical emission in the single
photon regime. Vacuum Rabi flopping is discussed. The oscillation amplitude of vacuum
Rabi flopping is interestingly determined by the number of electrons in the quantum dot.
Furthermore, the dynamics of an electrically pumped single quantum dot is described and
the full photon statistics of the quantum light emission for different pump rates is investi-
gated. Including semiconductor specific Pauli-blocking effects in the polarization dynamics,
a parameter study of an electrically driven single photon emitter is provided.





Abstrakt

Aktuelle Fortschritte in der Halbleitertechnologie etablieren ein neues physikalisches Sys-
tem, um quantenoptische Eigenschaften auf Nanoskalen zu untersuchen: ein Quanten-
punkt in einem Mikroresonator. Im Falle einer starken Kopplung übertrifft die Stärke der
Elektron-Licht Wechselwirkung die auftretenden Verluste und Rabi Oszillationen treten
auf. Diese Arbeit befasst sich mit der theoretischen Beschreibung solcher Systeme für den
Fall, dass wenige Photonen mit einem einzelnen Quantenpunkt wechselwirken und die Dy-
namik der Photonen und Elektronen stark korreliert ist. Typische theoretische Zugänge
basieren auf Faktorisierungsansätzen, die im Falle einer stark korrelierten Dynamik ihre
Gültigkeit einbüßen. Neue theoretische Zugänge sind zwingend erforderlich und werden
mit dieser Arbeit vorgestellt, die im Bewegungsgleichungsansatz eine Faktorisierung der
Elektron-Licht Wechselwirkung vermeiden und eine vollständige Beschreibung der Viel-
teilchenkinetik im Falle stark korrelierter Dynamiken gewährleisten, inklusive der Berück-
sichtigung von Gedächtniseffekten.

Für atomähnliche Quantenpunkte kann die Zahl der Elektronen und Löcher als konstant
angenommen werden. Mittels der vollständigen Induktion wird ein numerisch lösbares Mod-
ell eingeführt, das die ineinanderspielende Elektron-, Photon- und Phonondynamik bis auf
beliebige Genauigkeit auswertet. Überraschenderweise wird ein anfängliches thermisches
Lichtfeld im Resonator aufgrund der stark wechselwirkenden Phononen- und Photonendy-
namik in den Zustand eines nichtklassischen Lichtfeld gebracht. Neben dem üblichen spek-
tralen Anti-crossing, falls sich die Resonatormode in Resonanz mit der Bandlückenfrequenz
des Quantenpunktes befindet, treten weitere Anti-crossings auf, sobald die Kavitätsmode
von der Bandlückenfrequenz um ein ganzzahliges Vielfaches der LO-Phononenfrequenz ver-
stimmt ist. Diese von den Phononen herbeigeführte starke Kopplung führt zu anharmonis-
chen Rabi Oszillationen bei Raumtemperatur. In einem nächsten Schritt wird das induk-
tive Modell auf eine Biexziton-Kaskade in einem Quantenpunkt angewendet und für starke
und schwache Kopplung ein temperaturabhängiges Maß für Polarisationsverschränkung der
abgestrahlten Photonen bestimmt. Ab einer Temperatur von 120 K dominiert der Einfluss
der Halbleiterumgebung in GaAs und die Polarisationsverschränkung verschwindet. Dieses
Ergebnis stimmt mit aktuellen Messergebnissen überein.

In flachen Quantenpunkten ist die Zahl der Elektronen und der Löcher nicht mehr kon-
stant und die Vielteilchenkorrelationen der Ladungsträger können nicht mehr vernachläs-
sigt werden. Im Rahmen einer Photonwahrscheinlichkeitsentwicklung, die die starke Kor-
relation zwischen Elektronen und Photonen berücksichtigt, wird eine modifizierte Hartree-
Fock Faktorisierung eingeführt. Das erhöhte Pauli-Blocking in Halbleiterumgebungen führt
zu modizifierten Rabi Oszillationen, an deren Amplitude die Zahl der Ladungsträger im
Quantenpunkt bestimmt werden kann. Zudem wird die Photonenstatistik eines elektrisch
gepumpten Quantenpunktes berechnet und auf diese Weise eine Parameterstudie für elek-
trisch gepumpte Einzelphotonenemitter erstellt.
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A sa recherche, l’écrivain progresse

laborieusement, tâtonne en aveugle, s’engage
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l’on veut à tout prix tirer un enseignement de

sa démarche, on dira que nous avançons

toujours sur des sables mouvants.

Claude Simon

1 Introduction

1.1 Motivation

Quantum optical properties pave the

Figure 1.1: Micropillar SEM [SDT+05].

way to new and spectacular techno-
logical advances by improving the ac-
curacy of measurements done so far
with stabilized lasers [Shi07], increas-
ing the degree of security in quantum
cryptography via the knowledge of
quantum states [UFT07] or exploit-
ing entanglement for quantum com-
puting [BPM+97]. In addition to an
atom-photon interface, ideal sources
for deterministic quantum light emis-
sion with tunable photon statistics
are semiconductor quantum dots (QDs) coupled to an optical microcavity, cf. Fig. 1.1
[STH+09; FMR+09]. These systems also exhibit signatures of strong coupling [RSL+04].
In this regime, the electron-photon interaction outrivals the dissipation processes and dis-
tinct quantum optical phenomena become accessible, such as vacuum Rabi oscillations or
the vacuum Rabi splitting [KGK+06; MKH08]. In this limit, the quantized nature of light is
of primary importance, and semiconductor research begins to shed new light on well-known
quantum optical effects, e.g., gigantic, experimentally robust resonances of vacuum Rabi
splitting of the second rung in the Jaynes-Cummings ladder [KK08; SKK08]. Conceptually
new approaches are introduced, such as implementing the coherent control of an exciton
two-level system (qubit) by means of a time-dependent electric interaction [VSSM+10]. For
weak coupling, a smooth transition from strong photon bunching to Poissonian statistics
in the output characteristics of semiconductor microcavity lasers is observed [GWJ08].
One of the most feasible features of solid state environments is the capability of position-
ing nanostructures such as quantum dots permanently in a microcavity [KKKG06]. The
size and geometry of the QD control the properties, e.g., the coupling strength and the
confinement energies [Sti01]. Those systems are designated candidates for future technolog-
ical applications, including single-photon emitters [LO05; MIM+00]. In optical quantum-
information processing, semiconductor quantum dots inside a microcavity have emerged
as promising sources of polarization-entangled photon pairs [TPT06]. However, the limits
of future technological applications depend on understanding of quantum many-body phe-
nomena in condensed matter environments such as electron-electron scattering or phonon-
induced dephasing [SCK01; MZ07; MR09; RCB+09; DMK05] , which are not present in
atom-photon systems.
Common non-Markovian quantum mechanical approaches for treating the electron-photon
interaction result in a hierarchy problem, if the Jaynes-Cummings-Model (JCM), which is
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valid only in the case of uncoupled two-level-systems interacting with a single cavity mode
[JC63], is exceeded. Hence, quantum optics in semiconductors, where Coulomb-interaction
and electron-phonon interaction take place, calls for different approaches such as the Born
approximation[VWW01] or the cluster-expansion [KK08]. Recent work incorporates sev-
eral aspects of many-body phenomena into the calculation of semiconductor quantum
dot cavity quantum electrodynamics (QD-CQED): Absorption spectra in the presence of
strong electron-phonon interaction have been studied with polaron operator techniques
[WRI02; MKH08].
The excitonic time dynamics in a perturba-

Figure 1.2: Time-resolved emission
scheme, calculated in the equation of
motion approach [DMR+10].

tion approach, based on the Lamb-Dicke ap-
proximation [LMC08] for LA-phonons, com-
parable to the second-order Born approxima-
tion, has been theoretically investigated. Of-
ten, many-particle interactions are taken into
account via an equation of motion approach
[GMK06; MTK07]. However, factorization tech-
niques become problematic in case of strongly
correlated interactions, such as the electron-
photon interaction in the strong coupling and
single-photon regime.
This thesis focuses on the theoretical description of semiconductor QD-CQED beyond
the JCM, including non-Markovian contributions and many-particle interactions such as
electron-phonon coupling on a microscopical level. The equation of motion approach is
chosen as an established technique to explain recent experimental results and to give in-
sight into the underlying physics. Two theoretical frameworks are introduced to provide
a simulation tool for parameter studies in the single-photon limit: a mathematical in-
duction approach and the photon-probability cluster expansion. In this regime, quantum
correlations are important, and fully quantized approaches become necessary, which take
into account the complete and strongly correlated quantum dynamics of the observables
of interest: the photon density, the intensity-intensity correlation g(2)(t, 0)-function, the
polarization and the electron density. The mathematical induction model solves the QD-
CQED dynamics including the electron-longitudinal optical (LO) phonon interaction up
to an arbitrary accuracy in case of a fixed number of electrons in the system but including
dissipation processes such as a cavity loss or a radiative decay. In the presence of a wetting
layer, the number of carriers, electrons and holes, is not fixed and a modified Hartree-Fock
factorization based on the photon-probability cluster expansion (PPCE) approach is intro-
duced to treat the occurring many-particle correlations.

1.2 Highlights

The mathematical induction approach allows the inclusion of the LO-phonon interaction
up to an arbitrary order. As a result, the LO-phonon assisted QD-CQED dynamics is
computed and a novel feature predicted: Antibunching of Thermal Radiation by a Room-
Temperature Phonon Bath [CRCK10]. Furthermore, LO-phonon assisted cavity feeding
leads to interesting anharmonic Rabi oscillations for elevated temperatures. In the weak
and strong coupling regime, the biexciton cascade in a QD is computed and for the first
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time a temperature dependent analysis of the formation dynamics of an entangled photon
pair is derived [CMD+10]. For wetting layer contributions in the QD-CQED, a few-photon
model of the optical emission of semiconductor quantum dots is introduced, the PPCE
[RCSK09a]. A modified Hartree-Fock factorization is derived and the photon statistics of
a single quantum dot in a microcavity is calculated [SRK+10; SCR+10], and hereby the
completion of a theory of few photon dynamics in electrically pumped light emitting QD
devices provided [CRD+10; DMR+10].

1.3 Structure

The thesis is divided into five chapters. The introduction in this chapter 1 contains the
motivation, the highlights and the outline of the thesis. The fundamental quantum optical
model to study cavity-QED, the Jaynes-Cummings model (JCM), is discussed in chapter
2. The JCM provides an analytical solution under the condition of an isolated two-level
system with one electron interacting with a single cavity mode without dissipation pro-
cesses. These conditions are not fulfilled in the case of semiconductor QD-CQED. In order
to consider further interactions, such as electron-phonon coupling, and losses due to envi-
ronmental coupling, the equation of motion approach is chosen, which allows the extension
of the JCM. However, this leads to the well-known hierarchy problem and factorization
approaches become necessary. In chapter 3, an equation of motion approach is introduced,
which does not rely on factorization and solves the hierarchy problem via a mathematical
induction model. The induction approach goes beyond the JCM by including the LO-
phonon interaction up to arbitrary accuracy and cavity losses. However, similiar to the
JCM, the induction model relies on the assumption of a fixed number of electrons in the
system. In chapter 4, a Hartree-Fock based perturbation approach is introduced and is
valid without assuming a fixed number of carriers. In particular, this is important in stud-
ies of a single-QD laser in the presence of wetting layer (WL) carriers, since the WL leads
to a modified spontaneous emission source term. In chapter 5, a conclusion and outlook is
given.
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2 Quantum optics in the equation of motion

approach: The factorization problem

Theoretical approaches in semiconductor many-particle physics are often based on an equa-
tion of motion scheme in the formalism of second quantization [HK04]. The equations of
motion of observables are derived via commutating them with the full Hamiltonian of
the investigated system [KJHK99]. In contrast to typical master equation approaches,
the equation of motion approach does not rely on the Markovian approximation, i.e.,
the neglection of memory effects [Car99]. Therefore, to study quantum correlations of
higher order or ultrafast phenomena, the equation of motion approach is advantageous
and enables the investigation of novel quantum features, such as excitation induced de-
phasing [SCK01; SCK04], Coulomb scattering processes in quantum well and microcavity
systems [KKM01; KK08] or many-particle-induced non-Lorentzian lineshapes in semicon-
ductor nano-optics [FAD+02; MKH08].
The non-Markovian equation of motion approach results in the hierarchy problem. As an
example, the quantum correlations of second order couple to quantum correlations of the
third order [KJHK99]. The set of equations of motion is not closed, unless the quantum
correlations are factorized at a given level. A typical approach is the cluster expansion or
correlation expansion method [Fri96; GWLJ07; KK08]. Via a complete factorization of oc-
curring quantum correlations, the set of equations of motion is truncated and casted into
a closed set, which is numerically solvable. However, this cluster expansion approach is
problematic for systems, in which the quantum correlations are in the order of magnitude
of the corresponding mean value of the observable [RCSK09a]. A prominent example is
the single-photon emitter, where the fluctuations and mean value are of the same order of
magnitude.
In the following chapter, this factorization problem is discussed. A model Hamiltonian of a
two-level system strongly coupled to a single cavity mode is assumed. This simplest possible
fully quantized model of interest is exactly solvable [ENSM80]. The solution is called the
Jaynes-Cummings model (JCM) [JC63] and is taken as a benchmark for the solutions de-
rived in the equation of motion approach. The deviations from the exact Jaynes-Cummings
model are discussed.

2.1 Jaynes-Cummings Hamiltonian

The Hamiltonian of a single two-level system interacting with a single-mode field reads in
rotating-wave [HK04] and dipole approximation [SZ97]:

H = ~ωva
†
vav + ~ωca

†
cac + ~ω0c

†c − ~M(a†vacc† + a†cavc ), (2.1)

where ω0 is the frequency of the quantized light field with bosonic creation (c†) and annihi-
lation operators (c). In the two-level system one electron is assumed, either in the ground
state (v) with energy ~ωv or in the excited state (c) with ~ωc the excited-state energy.
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The fermionic creation (annhiliation) operator denote a
(†)
c/v and M is the electron-photon

coupling element.
Here, the coupling element is assumed to be

Figure 2.1: JCM Hamiltonian

real and includes the polarization of the pho-
ton and the dipole strength of the two-level
system, as well as the corresponding frequency
of the single-mode light field. The interaction
is depicted in Fig. 2.1. The two-level system is
driven by the quantized light field. If the elec-
tron is excited via a photon absorption from
the ground state to the excited state (a†cav),
a photon from the quantized light field is an-
nihilated (c). If the electron relaxes from the
excited state to the ground state via spontaneous or induced emission (a†vac), a photon
is created (c†). As long as the interaction is restricted to the electron-photon case, other
processes are not possible. Losses, such as cavity loss or radiative decay or pure dephas-
ing, are not considered. The zero point energy in the free-energy part of the photon-field
∑

k ~ωk/2 is omitted for convenience [SZ97]. The zero-point energy sums frequencies with-
out an upper bound and is accordingly infinite, an awkward feature of the quantized light
field. Fortunately, usual measurements in quantum optics do not apply apparatus, which
would register a response proportional to the zero-point energy. They response only to the
change in the total energy of the electromagnetic field [Lou83].

2.2 Jaynes-Cummings solution

In the case of a two-level system with one electron interacting with a quantized light field,
the dynamics can be solved exactly. Several approaches are possible, e.g., the unitary time-
evolution operator method [SZ97]. If the excited and ground state energy are chosen as:
~ωc = ~ω̃

2 = −~ωv, Eq. (2.1) equals the Jaynes-Cummings Hamiltonian and reads:

H =
~ω̃

2
(a†cac − a†vav) + ~ω0c

†c
︸ ︷︷ ︸

HI

−~M
(

a†vacc
† + a†cavc

)

︸ ︷︷ ︸

HII

. (2.2)

The dynamics of the system depends only on HII . It is convenient to describe the dynamics
in the interaction picture. The transformed interaction Hamiltonian HII reads:

H int
II = e

i
~
HI tHIIe

− i
~

HI t. (2.3)

Using the one-electron assumption, i.e., any combination of four electron operators becomes
zero in the expectation value and can be neglected (

〈〈〈
a†ia

†
jakal

〉〉〉
= 0 for i, j, k, l = v, c), and

assuming the two-level system to be in resonance with the light field, HII reads explicitely:

H int
II = −~M

(

a†vacc
† + a†cavc

)

. (2.4)
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The time evolution of the system for a given state |Ψ(t)〉 is calculated via the unitary time
evolution operator and reads |Ψ(t)〉 = U(t)|Ψ(0)〉 with |Ψ(0)〉 as the initial state and the
unitary time-evolution operator in the interaction picture:

U(t) = e−
i
~

Hint

II
t. (2.5)

After evaluating the exponential function, again using the one-electron assumption, the
time-evolution operator reads:

U(t) = cos
(

M
√

c†c + 1 t
)

a†cac + cos
(

M
√

c†c t
)

a†vav

−i
sin
(

M
√

c†c + 1 t
)

√
c†c + 1

c a†cav − i c†
sin
(

M
√

c†c + 1 t
)

√
c†c + 1

a†vac. (2.6)

Now, the time evolution of a given state is easily calculated, bearing in mind, that cosine
and the square root are analytical functions and can be expressed in a Taylor series. As
an example, the electron is initially in the excited state with N photons in the system, i.e.
the state is |Ψ(0)〉 = |c,N〉. After applying the unitary time evolution operator, the time
evolution reads:

|Ψ(t)〉 = U(t)|c,N〉 = cos
(

M
√

N + 1t
)

|c,N〉 − i sin
(

M
√

N + 1t
)

|v,N + 1〉. (2.7)

The analytical solution results from a division of the Hilbert space in subspaces, consisting
of the only two occurring processes in the system: 1) a photon is absorbed (N → N − 1)
and the electron moves into the excited state |v〉 → |c〉 and 2) a photon is emitted via
spontaneous or induced emission (N → N +1) and the electron moves back into the ground
state |c〉 → |v〉. The time evolution of ground and excited state densities is calculated via
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Figure 2.2: Analytical solution of the JCM for a two-level system interacting with a quan-
tized light field. Rabi oscillations occur between the ground and excited state.

the probability amplitudes given in the time evolution of the system state with CN
c =

〈c,N |Ψ(t)〉 and CN
v = 〈v,N + 1|Ψ(t)〉. The exact solution reads:

〈〈〈
a†vav

〉〉〉
=
∣
∣CN

v (t)
∣
∣
2

= sin2 (ΩN t) ,
〈〈〈
a†cac

〉〉〉
=
∣
∣CN

c (t)
∣
∣
2

= cos2 (ΩN t) , (2.8)
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with the quantum-mechanical Rabi frequency ΩN = M
√

N + 1, cf. Fig. 2.2. The solu-
tion includes quantum optical properties of emission processes, e.g. spontaneous emission,
seen in the vacuum Rabi oscillations (N = 0) and experimentally observed in [NRS+94].
The solution enables one to implement photon statistics dependent Rabi oscillations by
calculating a superposition of JCM solutions [LP07; SZ97]:

〈〈〈
a†cac

〉〉〉
=

∞∑

n=0

|pn|2 cos2 (Ωn t),

where |pn|2 is the probability to find n photons in a given mode within a given photon mean
value. Although the JCM is a powerful tool, to implement quantum optical properties in the
emission and absorption dynamics, it is more or less limited to an isolated two-level system.
Including, for example, Coulomb or phonon induced dephasing processes microscopically,
the interaction Hamiltonian is more complex and the presented analytical solution Eq. (2.8)
is not valid.

2.3 Hierarchy problem and cluster expansion

In this section, a simple example of the hierarchy problem is presented, which occurs in
systems with many-particle quantum correlations. This equation of motion approach is
chosen to include non-Markovian many-particle features in the calculations. Starting from
the Hamiltonian Eq. (2.1), equations of motion for the observables of interest are derived
via the Heisenberg equation of motion:

−i~∂t a†iaj = [Ĥ, a†iaj ]. (2.9)

A single-mode quantized light field and one electron in a two-level system are considered,
as well as resonance between the light mode ω0 and band gap frequency ωcv = ωc − ωv

assumed. The dynamics of the photon density, of the excited-, and ground state read:

∂t

〈〈〈
a†cac

〉〉〉
= 2 Im

[

M
〈〈〈
a†vacc

†
〉〉〉]

, (2.10)

∂t

〈〈〈
a†vav

〉〉〉
= −2 Im

[

M
〈〈〈
a†vacc

†
〉〉〉]

= ∂t

〈〈〈
c†c
〉〉〉

(2.11)

The equations of motion for the photon density and the ground state density are identical.
This is easy to understand: the JCM considers a closed system with particle conservation,
i.e., the number of excitations and photons (ν) is constant:

〈〈〈
ν
〉〉〉

=
〈〈〈
a†cac

〉〉〉
+
〈〈〈
c†c
〉〉〉

= const.
Assuming an initially excited two-level system without photons in the cavity,

〈〈〈
ν
〉〉〉

= 1 is

valid for all times. The one-electron assumption is also valid for all times
〈〈〈
a†cac

〉〉〉
+
〈〈〈
a†vav

〉〉〉
=

1, which yields for the conservation of particles:
〈〈〈
ν
〉〉〉

= 1 = 1 −
〈〈〈
a†vav

〉〉〉
(t) +

〈〈〈
c†c
〉〉〉
(t) →

〈〈〈
a†vav

〉〉〉
(t) =

〈〈〈
c†c
〉〉〉
(t). Of course, this is only valid for zero photons in the cavity and an

initially excited two-level system. The equations of motion of the densities couple to the
photon-assisted polarization:

∂t

〈〈〈
a†vacc

†
〉〉〉

= −iM
〈〈〈
a†cac

〉〉〉
− iM

(〈〈〈
a†cacc

†c
〉〉〉
−
〈〈〈
a†vavc

†c
〉〉〉)

. (2.12)
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The hierarchy problem is now obvious: a quantity with n photon operators couples to a
quantity with n + 1 photon operators [GWLJ07]. If the one-electron assumption is aban-
doned, another hierarchy problem occurs within the electronic system, cf. Chap. 4. The
set of differential equations must be truncated to obtain a closed system with respect to
the electron-photon coupling M . Common approaches rely on the Born approximation
[RBSK07; VWW01] or the cluster expansion [FMWS97; KJHK99]. Here, the cluster ex-
pansion is applied to derive the truncated form for Eq. (2.12):

∂t

〈〈〈
a†vacc

†
〉〉〉

= −iM
〈〈〈
a†cac

〉〉〉
− iM

〈〈〈
c†c

〉〉〉 (〈〈〈
a†cac

〉〉〉
−
〈〈〈
a†vav

〉〉〉)

−iM
(〈〈〈

a†cacc
†c
〉〉〉

c −
〈〈〈
a†vavc

†c
〉〉〉

c
)

. (2.13)

Pure, coherently driven quantities such as
〈〈〈
a†vac

〉〉〉
,
〈〈〈
c†
〉〉〉

are neglected. They do not con-
tribute to the combined electron-photon dynamics without the inclusion of a classical
pump field [RCSK09a]. If the correction terms

〈〈〈
a†iaic

†c
〉〉〉

c are neglected, the set of dif-
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Figure 2.3: Comparison of the second-order cluster-expansion (dashed, red line) in the
electron-photon coupling element with the exact solution of the JCM (solid, green line).
After 10 ps, the deviation of the exact solution becomes very large.

ferential equations [Eq. (2.10) -(2.11) and (2.13)] is closed and can be solved numerically
and analytically. With the same initial condition:

〈〈〈
c†c
〉〉〉
(0) = 0 and

〈〈〈
a†cac

〉〉〉
(0) = 1, the

solution is plotted in Fig. 2.3. Again, Rabi-oscillations are visible for the JCM (solid, green
line). The second-order correlation expansion is a good approximation for the first pico
seconds. After 10 ps, the deviation becomes larger and the approximation fails completely.
Negative probabilities occur due to the factorization. Dissipation processes (cavity loss or
electronic dephasing) can prevent negativities but do not solve the underlying problem. In
conclusion, a second-order correlation expansion in the electron-light coupling element is
not sufficient to factorize the combined electron-photon dynamics correctly. Higher order
correlation terms in Eq. (2.13) are necessary. The dynamics of the correction terms are
derived via the same approach. The photon-density assisted electron density in the excited
state reads:

∂t

〈〈〈
a†cacc

†c
〉〉〉

= 2 Im
[

M
〈〈〈
a†vacc

†c†c
〉〉〉]

. (2.14)
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The correlation term is derived by:

∂t

〈〈〈
a†cacc

†c
〉〉〉

c = ∂t

〈〈〈
a†cacc

†c
〉〉〉
− ∂t

[〈〈〈
a†cac

〉〉〉〈〈〈
c†c

〉〉〉
+
〈〈〈
a†cacc

†
〉〉〉〈〈〈

c
〉〉〉

+
〈〈〈
a†cacc

〉〉〉〈〈〈
c†
〉〉〉]

.

After the neglecting coherently driven contributions, the equation of motion reads

∂t

〈〈〈
a†cacc

†c
〉〉〉

c = 2 Im
[
M
〈〈〈
a†vacc

†c†c
〉〉〉

c + M
〈〈〈
a†vacc

†
〉〉〉

c
(〈〈〈

c†c
〉〉〉

+
〈〈〈
a†cac

〉〉〉) ]
. (2.15)

Using the one-electron assumption and Eq. (2.15), ∂t

〈〈〈
a†cacc†c

〉〉〉
c = −∂t

〈〈〈
a†vavc†c

〉〉〉
c is

shown. This identity is disturbing, since ground state and excited state dynamics differs in
quantum optical schemes. The ground state is driven by the higher-order photon-assisted
polarization and additionally by the lower-order photon-assisted polarization, whereas the
excited state couples only to the higher-order photon-assisted polarization. In the cluster
expansion approach, photon density-assisted ground and excited state lose this significant
difference in third order perturbation theory and are described via the same equation of
motion, only with different sign and initial conditions. Neglecting again the higher-order
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Figure 2.4: (a) Comparison of the third order cluster expansion and the JCM solution.
Although the approximation is quite good in the first 10 ps, the deviation becomes very
large at later times. (b) Solution of the 4th order cluster expansion (red, dashed line)
and the JCM solution (green, solid line). The solution obtained via the cluster expansion
diverges.

correlation term in Eq. (2.15), the set of equations of motion is closed and can be evaluated
numerically. The solution is plotted in Fig. 2.4(a). A truncation at the third order is prob-
lematic within a equation of motion approach. In Fig. 2.4(a), no negativities occur, but
the oscillation amplitude of the cluster expansion solution (dashed, red line) is too small.
Furthermore, the Rabi oscillation frequency is wrong due to the decreased amplitude. Note,
that the deviation from the JCM solution is bigger (difference of the minima: 0.3), com-
pared to the solution of the second order correlation expansion (−0.2). An alternating
convergence to the JCM is improbable. This becomes even clearer, when investigating the
4th order solution in the cluster expansion.
The higher-order photon-assisted polarization includes the intensity-intensity correlation
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2 Quantum optics in the equation of motion approach: The factorization problem

implicitly, and after the factorization, explicitly. The dynamics in the fourth order of the
electron-photon coupling element reads:

∂t

〈〈〈
a†vacc

†c†c
〉〉〉

= −2i M
〈〈〈
a†cacc

†c
〉〉〉
− iM

(〈〈〈
a†cacc

†c†c c
〉〉〉
−
〈〈〈
a†vavc

†c†c c
〉〉〉)

,(2.16)

∂t

〈〈〈
c†c†cc

〉〉〉
= −4 Im

[

M̄
〈〈〈
a†vacc

†c†c
〉〉〉]

. (2.17)

The factorization implies more correction terms than in the lower order due to the different
possibilities to factorize singlett, dublett, and triplett expectation values:

∂t

〈〈〈
a†vacc

†c†c
〉〉〉

c = (2.18)

= −2iM
〈〈〈
a†cacc

†c
〉〉〉

c − iM
〈〈〈
c†c†c c

〉〉〉
c
(〈〈〈

a†cac

〉〉〉
−
〈〈〈
a†vav

〉〉〉)

− 2iM
〈〈〈
c†c
〉〉〉 (〈〈〈

a†cacc
†c
〉〉〉

c −
〈〈〈
a†vavc

†c
〉〉〉

c
)

+ 4
〈〈〈
a†vacc

†
〉〉〉

c Im
[

M
〈〈〈
a†vacc

†
〉〉〉

c
]

.

This equation yields unexpected terms, proportional to the photon density and results
even in a diverging dynamics. In Fig. 2.4(b), the solution of the 4th order cluster expan-
sion (red, dashed line) and the JCM solution (green, solid line) are plotted. Up to 10 ps,
the factorized solution reproduces the JCM. For longer times, the factorized solution de-
viates strongly from the JCM solution. In the 4th order the solution additionally loses the
periodicity property. The excited state density finally diverges.
The cluster expansion factorization approach leads to wrong results in the single-photon
limit: few emitters are correlated with few photons in the cavity.
For an ensemble of emitters, at least 10−50, or for a high number of photons (25−50), the
cluster expansion yields good results [SKK08; GWJ08; KK08]. In particular, the second
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Figure 2.5: Solution of the 2nd and 4th order cluster expansion (red, dashed line) and the
JCM solution (green, solid line) for a high number of photons (N = 50).
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2 Quantum optics in the equation of motion approach: The factorization problem

order factorization converges to the solution of the JCM model. In Fig. 2.5, the Jaynes-
Cummings model solution (green, solid line) is compared with the 2nd-order (upper panel)
and 4th-order (lower panel) solution, obtained via factorization in the cluster expansion
scheme for the initial condition of one excited two-level system with initially N = 50 pho-
tons in the cavity. The 2nd-order solution fits the JCM solution perfectly. The deviations
are vanishingly small, which proves the cluster expansion scheme to be well suited for a
situation, where one emitter interacts with a large number of photons. In other words, the
electron and photon dynamics are weakly correlated, since only one out of 50 photons is
absorbed or re-emitted. Assuming this weak correlation regime, the 2nd-order equations of
motion can be rewritten. Given the one electron approximation, Eq. (2.12) is written as:

∂t

〈〈〈
a†vacc

†
〉〉〉

= −iM
〈〈〈
a†cac

〉〉〉
− iM

〈〈〈
c†c
〉〉〉
(2
〈〈〈
a†cac

〉〉〉
− 1).

For a large photon number N ,
〈〈〈
c†c
〉〉〉

= N dominates over the product
〈〈〈
a†cac

〉〉〉〈〈〈
c†c
〉〉〉
. In the

case of a single emitter, the photon density fluctuates ±1 around N , whereas the product
of excited state and photon number oscillates between 0 and 2N . The larger N , the closer
the photon-assisted polarization appears in the JCM limit. However, in the single-photon
limit, N and

〈〈〈
a†cac

〉〉〉
N are of the same order of magnitude and the deviations from the

JCM become large.
In Fig. 2.5 (lower panel), the solution of the 4th-order is compared with the JCM. Again,
the solution is closer to the JCM solution and shows a periodic behavior, which is lost in
the few photon limit, but the deviations are larger in comparison to the deviation between
the JCM solution and the 2nd-order solution. This suggests, that higher order correla-
tion expansion terms do not correspond and alter the dynamics artificially, introducing
anharmonic oscillation behavior seen for, e.g., t = 6 ps. The factorization scheme must be
adapted to the situation of weakly coupled electrons and photons. E.g., the cluster expan-
sion is done only within the photon field and correlation terms containing both fermion
and boson contributions such as

〈〈〈
a†cacc†c

〉〉〉
c ≈ 0 are neglected:

〈〈〈
a†cacc

†c†cc
〉〉〉

=
〈〈〈
a†cac

〉〉〉〈〈〈
c†c†cc

〉〉〉
+ 2
〈〈〈
a†cac

〉〉〉〈〈〈
c†c
〉〉〉〈〈〈

c†c
〉〉〉

+
〈〈〈
a†cacc

†c†cc
〉〉〉

c. (2.19)

Hence, correlations between the interacting fields are assumed to be small. Now, the cor-
rection term of 4th order reads:

∂t

〈〈〈
a†vacc

†c†c
〉〉〉

c = (2.20)

= −2iM
〈〈〈
a†cacc

†c
〉〉〉

c − iM
〈〈〈
c†c†c c

〉〉〉
c
(〈〈〈

a†cac

〉〉〉
−
〈〈〈
a†vav

〉〉〉)

+ 2iM
〈〈〈
c†c
〉〉〉 (〈〈〈

a†cacc
†c
〉〉〉

c −
〈〈〈
a†vavc

†c
〉〉〉

c
)

+ 4
〈〈〈
a†vacc

†
〉〉〉

c Im
[

M
〈〈〈
a†vacc

†
〉〉〉

c
]

.

The Rabi oscillations, which are described exact within the JCM, are approximated to a
satisfying accuracy by Eq. (2.20). Fig. 2.6 shows no deviation between the approximated
solution, derived via this modified cluster expansion, and the exact solution from the
JCM. However, the suggested truncation scheme is not adaptable to the strong coupling
regime, for few photons and few emitters. In case of weak coupling, presumely without
cavity enhanced dynamics, the factorization schemes such as the cluster expansion or the
Born approximation work. In the next section, an example is given: Two Coulomb-coupled
quantum dots are excited by quantum light. The calculation does not assume a cavity.
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2 Quantum optics in the equation of motion approach: The factorization problem
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Figure 2.6: The approximated Rabi oscillation via the modified cluster expansion in the
4th-order of the light-coupling element are in good accordance with the exact solution
given by the JCM .

Quantum light excitation of Coulomb-coupled semiconductor quantum dots is analyzed
for fixed light intensity but different photon statistics in the weak coupling regime.

2.4 Weakly driven Coulomb coupled quantum dots

Excitonic excitations in Coulomb-coupled nanostructures are of particular interest to un-
derstand many basic processes in many particle physics. Important examples are light har-
vesting complexes in coupled photosynthetical units [RM02] and nanoscale energy transfer
in metal structures as well as semiconducting nanocrystals [GLK07] or in polymer com-
posites [AMC+04]. A man made system for promising applications, such as entangled
photon processing [HPS07; SYA+06; ALP+06], are coupled semiconductor nanostructures
[SME+06], since their size, shape, composition and location can be controlled by modern
epitaxially growth techniques [BGL99] or chemical synthesis [DRVM+97]. Here, an anal-
ysis is performed of dipole-dipole coupled semiconductor quantum dots, providing typical
couplings and parameters, representative for many of the mentioned nanosystems.
Coulomb coupling between two QDs via dipole-dipole interaction leads to energy renor-
malisation of the ground-, exciton- and biexciton-state and Förster coupling. These in-
teractions transform the isolated two-level-systems into a multi-level-system [DAFK06].
Thus, the coupled quantum systems form new eigenstates and the individual systems can-
not be excited separately: excitons and many exciton states, such as biexcitons are formed
[UML+05]. The goal in this section is to consider the fully quantized electron-light in-
teraction in a multi-level system, expanding previous semi-classical investigations on the
nonlinear response of exciton-exciton correlations. The impact of photon statistics of the
incident light on the creation of excitons and biexcitons is investigated, using the pho-
ton statistics of the excitation light as an additional parameter to differentiate between
these many particle excitations and presenting hereby a theoretical approach to implement
photon-statistical properties [KK08] in coupled semiconductor structures.
Adressing the quantum-optical properties of the excitation light, the electron-light inter-
action is calculated on a microscopic level [AHZ97]. Self-consistently including photon-
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2 Quantum optics in the equation of motion approach: The factorization problem

statistical and Coulomb-effects a measurable and strong impact of the light source on the
creation of biexcitons in comparison to the creation of single-excitons is predicted. Here,
it is focused on the excitation with

Correlator

Beam SplitterLight Source

Photon Detector

Photon Detector

I(t + τ )

I(t)

Figure 2.7: Hanbury Brown and Twiss Experiment

thermal, coherent and squeezed light.
To characterize photon statistics of
the excitation light source, one typ-
ically uses the Hanbury Twiss and
Brown setup, which is illustrated in
Fig. 2.7. It consists of a light source,
a beam splitter, two photon detec-
tors and a correlator.[HT56] In this
setup one measures the second-order
correlation function of two intensities at measurement time t (detector 1) and t+τ (detector
2), defining τ as the delay time:

g(2)(t, τ) =

〈〈〈
: I(t)I(t + τ) :

〉〉〉

〈〈〈
I(t)

〉〉〉〈〈〈
I(t + τ)

〉〉〉 , (2.21)

which represents the normalized deviation from a Poisson distribution [MW95]. Three typ-
ical cases for g(2) (i-iii) are discussed: (i) If there is no correlation between the emitted
photons, the g(2) of a Poisson distribution has the value 1. The probability to measure a
photon at the detector 2 is independent of the measurement result at detector 1. Exam-
ples for this photon statistics are laser fields well above threshold, representing coherent
(Glauber) states [Gla63]. (ii) If it is more probable to measure a photon at detector 2, after
detector 1 has measured a photon, the light field is described via a super-Poissonian statis-
tics, showing photon-bunching. An example is a thermal light field, which shows g(2) = 2.
An example is the Bose-Einstein-distribution of the black body radiation [MW95]. (iii) The
light field is in a sub-Poissonian state, if g(2) is smaller than 1, meaning it is less probable
to measure a photon at detector 2 after a positive measurement result at detector 1 is
registered. This effect is called anti-bunching. An example is squeezed light emitted by a
single-photon-emitter [BMJS05].

2.4.1 Hamiltonian and equations of motion

Starting in a local basis (see Fig. 2.8), the total Hamiltonian Hlocal = H0e + He−e + H0p +
He−p is expressed via local annihilation (creation) operators and includes the free energy
of the electronic H0e and photonic system H0p, the electron-electron interaction He−e and
the electron-light interaction He−p. The free energy part of the electronic system reads:

H0e =
∑

n

(

~ωvna†vnavn + ~ωcna†cnacn

)

, (2.22)

The electronic states of Coulomb-coupled quantum dots are described via local annihilation
(creation) operators a

(†)
in , where i denotes the electronic state and n = (1, 2) the QD.

Each QD has one valence and one conduction band state in effective mass approximation
of each individual nanostructure [HK04], thus i = (v, c) with ~ωvn valence band and
~ωcn conduction band energy of quantum dot n. The number of electrons is conserved
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2 Quantum optics in the equation of motion approach: The factorization problem

inside every quantum dot, i.e. tunneling between the quantum dots is prohibited. The

0

Figure 2.8: Local (electron operators a(†) ) and non-local (exciton operator B(†)) excitation
scheme of two Coulomb-coupled quantum dots. Förster-Interaction transforms the coupled
two-level-systems into a four-level-system.

two-particle interaction Hamiltonian He−e describes the Coulomb-interaction and can be
expressed in the local basis of creation and annihilation operator of the individual dots
[DAFK06; RRK08]:

He−e = VF a†c1a
†
v2ac2av1 + V ∗

F a†v1a
†
c2av2ac1 + Vcv a†c1a

†
v2av2ac1 (2.23)

+Vvc a†v1a
†
c2ac2av1 + Vcc a†c1a

†
c2ac2ac1 + Vvv a†v1a

†
v2av2av1.

The parameters are chosen for Coulomb-coupled quantum dots (Egap = 1.4 eV; VF =
1 meV Förster interaction; Vcc = Vvc = 0.1 meV for biexciton and single-exciton-shifts;
dvc = 0.3 e nm for the dipole moment.) The Coulomb-interaction results in a ground
state shift Vvv, two monoexciton shifts V 12

vc , V 21
cv and a biexciton shift Vcc. These shifts

correspond to energy renormalizations caused by electrostatic interactions. V 12
F describes a

non-radiative Coulomb energy transfer from one quantum dot to the other. H0e and He−e

can be written in terms of four two-electron operators by defining G = a†v1a
†
v2av2av1 as

the ground state operator, P 1
1 = a†v1a

†
v2av2ac1 and P 1

2 = a†v1a
†
v2ac2av1 as single-polarisation

operators leading to an annihilation of a single-excitonic state and P 2 = a†v1a
†
v2ac2ac1 as

the double-polarisation operator, leading to an annihilation of a biexcitonic state. In this
local two-electron basis [RAK+06], the Hamiltonian of the electronic system He = H0e +
He−e has non-diagonal contributions due to the Förster-coupling VF . Thus, taking Förster-
coupling into account [UML+05], P 1

1 and P 1
2 are no longer eigenstates of the Hamiltonian.

To find the new eigenstates, the electron part of the Hamiltonian is diagonalized [RAK+06]
and the local basis illustrated in Fig. 2.8 is transformed into the non-local exciton basis:
in this case into a four-level-system. All Coulomb-induced energy shifts are included in the
definition of the new operators derived via diagonalization (ground state, monoexcitonic,
biexcitonic shifts and Förster-Interaction). New collective operators are formed: G(†) is the
ground state, B2(†) the biexciton annihilation (creation) operator, replacing two particle

operators a†v1a
†
v2ac2ac1 and B

1(†)
m the exciton annihilation (creation) operator (m=1,2).

Within the non-local basis the electron operators (G(†), B
1(†)
m , B2(†)) are eigenvectors of
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2 Quantum optics in the equation of motion approach: The factorization problem

Figure 2.9: Coulomb-interaction between the electrons leads to energy renormalization of
the ground state Vvv , monoexcitonic Vvc and biexcitonic state Vcc, as well as to Förster-
coupling VF , corresponding to a non-radiative energy transfer between the quantum dots.

the electron part of the Hamiltonian with eigenvalues (~ωG, ~ωm, ~ωB). B
1(†)
m represent a

superposition of localized polarisations [RAK+06]:

B1
m =

∑

n

vm
n P 1

n . (2.24)

The coefficients vm
n depend on the strength of the Förster-coupling, the energy of the

monoexcitonic energy shifts and on the band gap frequencies. In case of two coupled quan-
tum dots, they can be calculated analytically via the quantity ∆e = VF (B − ~ω1)

−1 =
−VF (C − ~ω2)

−1:

v1
1 = −v2

2 = −
(
1 + ∆2

e

)− 1
2 ∆e, v1

2 = v2
1 =

(
1 + ∆2

e

)− 1
2 . (2.25)

The electron-light interaction (matrix element Mvc
kn) is also transformed into the new ba-

sis [RAK+06]. Starting from the local two-electron basis, He−p reads in a rotating-wave
approximation [HK04]:

He−p = −
∑

k,n,m6=n

Mvc
kn

(

G†P 1
nc†k + P 1†

m P 2c†k

)

+ h.c. , (2.26)

where c
(†)
k denotes the Boson annihilation (creation) operator of the photon in the excita-

tion and dissipation mode with frequency ω = ck and m,n the quantum dot. Eq. (2.26)
incorporates radiative coupling between the dots, as well as local electron-light interaction.
Using Eq. (2.24) and introducing non-local matrix elements (M̄k

m, M̄k
m,2), He−p is expressed

via non-local electron operators. The non-local matrix elements are defined as [RAK+06]:

M̄k
m =

∑

n

(vm
n )∗ M̄vc

kn, M̄k
m,2 =

∑

i,n 6=i

vm
n M̄vc

ki . (2.27)
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2 Quantum optics in the equation of motion approach: The factorization problem

The new matrix elements include important characteristics of Förster-coupled systems,
e.g. a vanishing electron-light interaction (dark states) in the case of two identical systems
(quantum dots) [DAFK06]. Since the free energy Hamiltonian of the photonic system H0p

stays unchanged, the total Hamiltonian of the diagonalized system reads:

H =
∑

m

~ωmB1†
mB1

m + ~ωBB2†B2 +
∑

k

~ωc†kck − ~

∑

km

(

M̄k
mG†B1

m + M̄k
m,2B

1†
m B2

)

c†k + h.c.

The ground state energy is chosen to be zero and ~ωm and ~ωB denote the energy levels
of the four-level-system, illustrated in Fig. 2.8, with two exciton and one biexciton level.
The temporal evolution of the system is calculated via the Heisenberg equation of motion:
−i~∂tA = [H,A] for occurring many body expectation values. All correlations up to the
fourth order of the light coupling element M̄k

m are included. Single-mode excitation is

assumed, i.e.: c
(†)
k ≡ c(†) with M̄k

m = M̄m. Also, to consider dissipation processes, the
electronic system is coupled to a photon reservoir, which causes a decay of the exciton
and biexciton states [MW95]. The decay rate is described via the Einstein-coefficient Γ =
(500ps)−1 [DAFK06]. The equations for the ground state and excited state densities read:

∂t

〈〈〈
G†G

〉〉〉
= 2Γ

(〈〈〈
B1†

1 B1
1

〉〉〉
+
〈〈〈
B1†

2 B1
2

〉〉〉)

− 2
∑

m

Im
(

M̄m

〈〈〈
G†B1

m c†
〉〉〉)

, (2.28)

∂t

〈〈〈
B1†

mB1
m

〉〉〉
= −2Γ(

〈〈〈
B1†

m B1
m

〉〉〉
−
〈〈〈
B2†B2

〉〉〉
) + 2Im(M̄∗

m,2

〈〈〈
B2†B1

mc
〉〉〉

+ M̄m

〈〈〈
G†B1

mc†
〉〉〉
),(2.29)

∂t

〈〈〈
B2†B2

〉〉〉
= −4Γ

〈〈〈
B2†B2

〉〉〉
+ 2

∑

m

Im
(

M̄m,2

〈〈〈
B1†

mB2c†
〉〉〉)

. (2.30)

A Born-approximation in this order of electron-light coupling element leads to a photon
density driven inversion. Since the intensity of the driving field is expressed via the photon
density and is chosen to be equal for different light sources, differences in the photon statis-
tics do not enter in the present order of the electron-light coupling element. Eq. (A.2) and
(A.3) include spontaneous emission and couple to photon-assisted densities, which are given
in the App. A.1 with Eq. (A.4) - (A.5)]. A characteristic quantity of Förster-coupled nanos-
tructures is a two-photon polarisation

〈〈〈
G†B2c†c†

〉〉〉
, which enter in higher order photon-

assisted polarisation [see Eq. (A.7)]. On this level, also the photon statistics of the incident
radiation occurs via its characteristic g(2) value, including bunching or anti-bunching fea-
tures. In the fourth-order of the light-coupling element, the set of differential equations is
closed via the Born-Approximation [RBSK07]:

〈〈〈
B1†

1 B1
1c†c†cc

〉〉〉
=
〈〈〈
B1†

1 B1
1

〉〉〉〈〈〈
c†c†cc

〉〉〉
. Here,

the photon correlation
〈〈〈
c†c†cc

〉〉〉
is represented by g(2) =

〈〈〈
c†c†cc

〉〉〉
/
〈〈〈
c†c
〉〉〉
2 [see Eq. (2.21)]:

replacing
〈〈〈
c†c†cc

〉〉〉
with g(2)

〈〈〈
c†c
〉〉〉
2 statistical properties are implemented via the choice of
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g(2). After these approximations and substitution and neglecting quantities, which couple
to fifth order in the light-coupling, hence Eq. (A.9) and (A.8) read:

∂t

〈〈〈
G†B1

nc†c†c
〉〉〉

= −i
(
ω1

n − ω − iΓ
) 〈〈〈

G†B1
mc†c†c

〉〉〉
− 2i

∑

l

M̄∗
l

〈〈〈
B1†

l B1
nc†c

〉〉〉
(2.31)

+ig(2)
〈〈〈
c†c
〉〉〉
2

(

M̄∗
n

〈〈〈
G†G

〉〉〉
−
∑

l

M̄∗
l

〈〈〈
B1†

l B1
n

〉〉〉

)

+ iM̄n,2

〈〈〈
G†B2c†c†

〉〉〉
,

∂t

〈〈〈
B1†

m B2c†c†c
〉〉〉

= −i
(
ω2 − ω1

m − ωk − 3iΓ
)〈〈〈

B1†
m B2c†c†c

〉〉〉
− 2i M̄∗

m,2

〈〈〈
B2†B2c†c

〉〉〉

−ig(2)
〈〈〈
c†c
〉〉〉
2

(

M̄∗
m,2

〈〈〈
B2†B2

〉〉〉
−
∑

l

M̄∗
l,2

〈〈〈
B1†

mB1
l

〉〉〉
.

)

(2.32)

The set of differential equations is closed. In Eqs. (2.31) and (2.32), typical quantum
optical effects are visible like the spontaneous emission, depending in the fourth order only
on photon density-assisted exciton and biexciton densities. Also the photon-density driven
inversion, responsible for induced-absorption and emission processes, can be recognized,
second line in Eq. (2.32). Furthermore, characteristic for Förster-coupled nanostructures,
excitation transfer from, e.g. quantum dot l to quantum n influences the system dynamics.

2.4.2 Photon statistics as a probe for exciton correlations

The system of differential equations [Eq. (2.30) - (A.9)] is numerically solved. Initially, the
electronic system is in the ground state

〈〈〈
G†G

〉〉〉
= 1, all other quantities are zero. Light

sources with different g(2), but having an equal mean photon number
〈〈〈
c†c
〉〉〉

are chosen
to discuss the g(2)-dependence of the excitation efficiency. The g(2)-function differs in the
case of τ = 0 for different statistics (thermal light: g(2) = 2, coherent light: g(2) = 1,
squeezed light: g(2) = 0.2) [UGA+07]. Since a single mode theory is derived, the station-
ary excitation of a constant flux of photons

〈〈〈
c†c
〉〉〉

balances the loss of photons due to
spontaneous emission into the dissipative modes. The excitation strength is determined by
the dipole moment Mm and photon number. It is kept within the validity of the applied
Born approximation, which can be deduced by an independent evaluation of the JCM for
a single exciton, cf. Sec. 2.2. The excitation frequency is chosen to be resonant with one
ground-state to single-exciton-transition [see Fig. 2.8], which is approximately half of the
ground-state to biexciton-transition. Due to the Förster coupling, there is always an energy
splitting between the exciton frequencies. The ground-exciton transitions cannot be both
in resonance, cf. the absorption spectrum in Fig. 2.10(left,inset). Fig. 2.10(left), shows the
exciton density of the lowest optical transition, the photon flux is adiabatically switched
on. The optically generated exciton density built-up is plotted for three values of g(2). The
exciton density for squeezed and coherent excitation is higher than for thermal excitation.
Thus, a small value for g(2) is advantageous, if excitons are created. This occurs, since only
one photon is absorbed to create an exciton and a part of the bunched photons passes the
electronic system unused. In this case, it is more effective to excite with anti-bunched light,
when photons arrive successively. However, the quantitative influence of the photon statis-
tics remains small. This changes drastically for the exciton of higher excitonic complexes.
In Fig. 2.10(right), the biexciton density for different g(2) is plotted. Here, thermal excita-
tion is clearly advantageous for creating biexciton densities. The influence of the photon
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Figure 2.10: Left: Single-exciton dynamics for stationary excitation with different values for
g(2). (solid curve: g(2) = 1, coherent excitation; dashed curve: g(2) = 2, thermal excitation;
dotted curve: g(2) = 0.2, squeezed excitation). Right: Biexciton dynamics for stationary
excitation with different values for g(2). (solid curve: g(2) = 1, coherent excitation; dashed
curve: thermal excitation g(2) = 2; dotted curve: squeezed excitation g(2) = 0.2).

statistics has an opposite effect compared with excitonic excitations: Biexcitons creation
is a two-photon-process, thus more susceptible to photon-correlations. Compared to the
single-exciton dynamics in Fig. 2.10(left), where anti-bunched light is advantageous for the
creation of excitons, multi-photon-processes, such as biexciton generation, e.g.

〈〈〈
B2†Gcc

〉〉〉
,

favor bunched photons, i.e. simultaneous absorption of photon pairs. Therefore, biexcitonic
levels are populated stronger for thermal excitation. Next, the excitation-dependence of the
quantum optical excitation-scheme is studied. In Fig. 2.11(left), the exciton densities are

0 500 1000
Photon Number [N]

0.0

5.0×10
-3

1.0×10
-2

1.5×10
-2

2.0×10
-2

E
xc

ito
n 

D
en

si
tie

s

0 500 1000

-2

0

2

∆B
1 

 [
%

]

0 500 1000
Photon Number [N]

0

2×10
-10

4×10
-10

6×10
-10

B
ie

xc
ito

n 
D

en
si

tie
s

0 500 1000
-40

-20

0

20

40

∆B
 2

  [
%

]

Figure 2.11: Left: Exciton density and percental exciton density differences as a function
of the excitation strength. The coherently driven exciton-density (solid curve) is taken as
a benchmark (dashed curve: ∆B1

th for thermal excitation; dotted curve: ∆B1
sq for squeezed

excitation). Right: Biexciton density and percental biexciton density differences as a func-
tion of the excitation strength. The coherently driven biexciton-density (solid curve) is
taken as a benchmark (dashed curve: ∆B2

th for thermal excitation; dotted curve: ∆B2
sq for

squeezed excitation).
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2 Quantum optics in the equation of motion approach: The factorization problem

plotted as a function of the excitation strength
〈〈〈
c†c
〉〉〉

= n (mean photon number). Also the
percental deviation from coherent (laser g(2) = 1) defined by:

∆B1
th/sq =

〈〈〈
B1†

mB1
m

〉〉〉

coh −
〈〈〈
B1†

mB1
m

〉〉〉

th/sq
〈〈〈
B1†

mB1
m

〉〉〉

coh

· 100 (2.33)

is shown. The exciton density deviation depends linearly on the mean photon number of
the photon flux. For weak pumping, the photon-statistical impact on the creation of single-
excitons can be neglected. The calculations confirm that for single-excitons different values
of g(2) are negligible, unless the excitation strength is high enough to populate many particle
correlations:

〈〈〈
G†B1†

m c†c†c
〉〉〉
,
〈〈〈
B1†

mB2c†c†c
〉〉〉

in the fourth order of the light-coupling element.
With increasing excitation strength, the difference becomes measurable in a typical pump-
probe experiment [HK04; AHZ97]. In this case, the theory predicts differences up to 3%
(not shown). For comparison, in Fig. 2.11(right), the more sensitive biexciton densities and
its deviation from coherent excitation (∆B2) is plotted:

∆B2
th/sq =

〈〈〈
B2†B2

〉〉〉

coh −
〈〈〈
B2†B2

〉〉〉

th/sq
〈〈〈
B2†B2

〉〉〉

coh

· 100. (2.34)

Here, photon statistics show a large impact: up to 40% deviation in populating the biexci-
ton density can be obtained, rather independently of the excitation strength. Furthermore,
a qualitative change cp. to Fig. 2.11(left) can be seen: thermal excitation populates biex-
citons stronger, thus the deviation is negative, in contrast to the case, when creation of
single-excitons is investigated and deviation is positive, showing an inversed behavior with
respect to exciton generation. With higher excitation strength only the absolute value of
the deviation increases, but not the relative.
The presented results suggest strong, qualitative differences of excitonic and biexcitonic be-
havior on the photon statistics of the incident light. The photon statistics takes advantage
of different aspects of the material excitation and may be used for possible optical device,
detecting absorption of different many particle species to measure the photon statistics
directly. However, the calculation were done in the stationary, weakly coupled regime. No
Rabi oscillations occur. In this limit, the Born factorization and the cluster expansion are
valid approaches for calculations as presented.
To go beyond the weak coupling regime, exact models are preferable. In the next chapter,
an induction model is introduced, which reproduces important exact solutions numerically
up to an arbitrary accuracy in the case of a fixed electron number, cf. Chap. 3. If the num-
ber of electrons is not constant, another approach is taken to reproduce the JCM in the
equation of motion approach by expanding the expectation values in photon probabilities,
cf. Chap. 4
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3 Quantum dot cavity quantum electrodynamics

3.1 Mathematical induction approach

In this section, the QD cavity-QED within the

Figure 3.1: GaAs/InAs-QD [MGJ01].

equation of motion approach is described by
a mathematical induction approach. Based on
the factorization problems of the cluster ex-
pansion in the single-photon or strongly cor-
relation limit, cf. Chap. 2, a theoretical frame-
work is derived to treat strongly coupled quan-
tum correlations up to an arbitrary accuracy
in a non-Markovian approach. This novel ap-
proach allows one to include more interactions
without any factorization, e.g. the electron-
phonon interaction, or a classical pump field,
or Coulomb contribution in the case of two or
more electrons in the QD. If a set of general
equations of motion for the involved quantum
correlations is found, the induction method is
limited solely by numerical means, as long as
the number of electrons in the QD is fixed. In small and deep QDs, this is a good approx-
imation, since the WL electrons are energetically well separated from the QD states and
the QD is considered to be atom-like [SGB99a; Sti01]. For shallow QDs, the WL carriers
easily scatter into the QD states and a fixed number of electrons cannot be assumed, cf.
Chap. 4.
This section is organized as follows. First, the Hamiltonian is discussed in Sec. 3.1.1, in-
cluding QD specific properties. In Sec. 3.1.2, a general set of equations of motion is derived
and discussed, including all occurring quantum correlations. To benchmark this induction
approach, its results are compared with the JCM and the independent Boson solution in
Sec. 3.2. Then, the LO-phonon impact on the QD cavity-QED is evaluated with respect
to the absorption spectrum and LO-phonon assisted cavity feeding in Sec. 3.3 and the
remarkable feature, that a classical cavity field is transformed into a non-classical via the
LO-phonon interaction, i.e. LO-phonon induced anti-bunching in Sec. 3.4.

3.1.1 The Hamiltonian

Focusing on a QD strongly coupled to a microcavity within a semiconductor bulk mate-
rial, the Heisenberg equation of motion approach is chosen to calculate the full quantum
kinetics of quantum optical observables of interest. The QD is populated with one electron
and treated as a two level system with one valence band state with energy ~ωv and one
conduction band state with energy ~ωc, e.g., InAs/GaAs-QD with a base length of smaller
than 13 nm [SGB99a] or free-standing QD fabricated in the heterogeneous droplet epitaxy
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3 Quantum dot cavity quantum electrodynamics

method [SMO+02]. For larger QD, where the one electron assumption is not valid anymore,
other approaches become necessary [RCSK09b]. The QD band gap energy ~ωcv := ~ωc−~ωv

and the wave functions are calculated in the effective mass approximation [HK04]. The QD
interacts with the classical pump field Ω(t), the effective single cavity mode ω0 and with
LO-phonons of the semiconductor bulk material, cf. Fig 3.2. The LO-phonon frequency is
ωLO and a constant dispersion is assumed (Einstein model) [MZ07]. The total Hamiltonian
of the system reads in rotating-wave and dipole approximation [KK08; HK04]:

H = ~ωva
†
vav + ~ωca

†
cac − ~Ω(t)(a†vac + a†cav)

+~ω0c
†c − ~M(a†vacc

† + a†cavc ) (3.1)

+~

∑

q

ωLOb†qbq + a†cac

(

gc
qbq + gc∗

q b†q

)

+ a†vav

(

gv
q bq + gv∗

q b†q

)

,

where a(†) denotes the fermionic annihilation (creation) operators for the electron in the

quantum dot and the bosonic annihilation (creation) operators c(†) for photons and b
(†)
q for

LO-phonons in the mode q. Electron and photons interact via the electron-light coupling-
element M , which depends on the geometry, size and position of the quantum dot in
the semiconductor microcavity [RSL+04; TPT06; Hoh10]. The electron-phonon interaction

is given with the exciton-phonon Fröhlich-coupling element g
(c,v)
q [MZ07; KAK02]. The

modification of the bulk phonon modes due to the geometry and size of the microcavity
is assumed to be small and is therefore neglected [WLW09]. Due to the large band gap
frequency ωcv in comparison to the actual phonon energies in GaAs, non-diagonal electron-
phonon contribution are also not included. A semi-classical electron-light interaction is

Figure 3.2: Scheme of the semiconductor quantum dot cavity-QED. The quantum dot is
treated as a two-level system with one valence v and one conduction band state c. The
electron a

(†)
v/c in the quantum dot interacts with LO-phonons b

(†)
q from the semiconductor

bulk material via the electron-phonon coupling element g
(v,c)
q and with the photons c(†)

of the cavity via the electron-photon coupling element M . A phenomenologically included
cavity loss κ is considered, as well as a classical pump field Ω(t).
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included, assuming an excitation of the carriers in the QD by an external laser field.
The corresponding interaction strength is determined by Ω(t) = ME(t)/~ with E(t) =
Ẽ(t) cos(ωlt), oscillating with ωl and including a time dependent amplitude Ẽ(t).
In this investigation, all parameters are chosen for an InAs/GaAs-quantum dot in a GaAs
semiconductor bulk material, cf. App. A.2 for the list of numerical parameters.

3.1.2 General equations of motion

A general set of equations is derived with the Heisenberg equation of motion −i~∂tA =
[H,A], where A is an arbitrary operator. For example, the excited state (a†cac) dynamics
reads:

∂t

〈〈〈
a†cac

〉〉〉
= 2 Im

(

M
〈〈〈
a†vacc

†
〉〉〉

+ Ω(t)
〈〈〈
a†vac

〉〉〉)

. (3.2)

This equation couples to the photon-assisted polarization via the electron-photon coupling
element M and to the polarization via the classical pump field Ω(t). The photon-assisted
polarization is given by:

∂t

〈〈〈
a†vacc

†
〉〉〉

= −i
(
ωcv − ω − iκ)

〈〈〈
a†vacc

†
〉〉〉
− iΩ(t)

(〈〈〈
a†cacc

†
〉〉〉
−
〈〈〈
a†vavc

†
〉〉〉)

(3.3)

−i M
〈〈〈
a†cac

〉〉〉
− i M

(〈〈〈
a†cacc

†c
〉〉〉
−
〈〈〈
a†vavc

†c
〉〉〉)

−i
∑

q

(gc
q − gv

q )
〈〈〈
a†vacc

†b
〉〉〉
− i

∑

q

(gc∗
q − gv∗

q )
〈〈〈
a†vacc

†b†
〉〉〉
.

To model a realistic microcavity, a cavity-loss is introduced phenomenologically, which is
assumed to be κ = 10µeV [RSL+04]. The photon-assisted polarization couples again to
higher order photon-assisted quantities such as

〈〈〈
a†cacc†c

〉〉〉
. Additionally, the LO-phonon

operators enter into the dynamics. The hierarchy problem is obvious. Here, a numerically
exactly solvabel model is introduced in order to calculate the LO-phonon quantum cavity-
QED for an initially fixed number of electrons in the QD [CRCK10].
In the first step, a general set of equations is derived via mathematical induction. It is not
necessary, to calculate all interactions at once. Applying the product rule for phonon- and
photon assisted quantities, the interaction adds up:

∂t

(

a†cacc
†cb†qbq

)

=
(

∂t a†cacc
†c
)

b†qbq + c†c
(

∂t a†cacb
†
qbq

)

. (3.4)

Therefore, the general equations of motion are derived separately for the phonon- and
photon-assisted quantities and added afterwards. Here, it is particularly convenient, since
the electron-photon coupling is non-diagonal, whereas the electron-phonon coupling is diag-
onal in the Hamiltonian. The derivation of a general set of equations of motion is straight-
forward, and proven via mathematical induction. To illustrate the derivation, an example is
given: the generalized equation of motion for photon-correlations. The equation of motion
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of the photon-density, or first-order photon correlation, and intensity-intensity correlation,
or second-order photon correlation read:

∂t(c
†c) = iM

(

a†vacc
† − a†cavc

)

,

∂t(c
†c†cc) = 2 iM

(

a†vacc
†c†c − a†cavc

†cc
)

.

In this particularly simple example, the general equation of motion is easy to guess with p
an integer:

∂t(c
†pcp) = p iM

(

a†vacc
†pcp−1 − a†cavc

†p−1cp
)

. (3.5)

It follows from the commutator algebra [A,F (B)] = [A,B]F ′(B) a convenient rule [CT99;
AHK99], which is applied to arbitrary powers of the photon-operators:

∂tc
†p = ∂tF (c†) = −iM [a†vacc

† + a†cavc, F (c†)] = −iMa†cav[c, c
†]F ′(c†) = −ipMa†cavc

†p−1,

and Eq. (3.5) is proven and is valid for the hermetian conjugate as well. In this illustrated
derivation, the combined electron-phonon and electron-photon dynamics are computed and
expressed in a general set of equations of motion. For convenience, some abbreviations are
introduced, taken into account the constant dispersion of the LO-phonons: ω(q) = ωLO

[KAK02; MZ07]. Since the free energy rotation is the same for every wave number q, it is
possible to write:

∂t

〈〈〈∑

q

bq

〉〉〉
|free = −i

∑

q

ωq

〈〈〈
bq

〉〉〉
= −i ωLO

〈〈〈∑

q

bq

〉〉〉
, (3.6)

defining:

b̄ :=
∑

q

(gc
q − gv

q )bq. (3.7)

Now, only the number of phonon operators is of importance and the set of equations
is simplified for matters of clarity. In the one electron and two level assumption, only
three types of fermionic states are possible: G is the ground, E the excited state and T
the transition from ground to excited state. All three of them can be photon(p, s)- and
phonon(m,n)-assisted with (p, s,m, and n integers):

Gp,s
m,n := a†vavc

†pcsb̄†mb̄n, (3.8)

Ep,s
m,n := a†cacc

†pcsb̄†mb̄n, (3.9)

T p,s
m,n := a†vacc

†pcsb̄†mb̄n. (3.10)

The Heisenberg equation of motion leads to a general set of equations of motion for different
orders in electron-photon and electron-phonon coupling elements by raising or lowering the
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indices p, s,m, n. An observable of interest to calculate the absorption is the microscopic
polarization. The dynamics are calculated via

∂t

〈〈〈
T p,s

m,n

〉〉〉
= (3.11)

= −i [ωcv − (p − s)ω0 − (m − n)ωLO − i(p + s)κ − iγ]
〈〈〈
T p,s

m,n

〉〉〉

− ip M
〈〈〈
Ep−1,s

m,n

〉〉〉
− iM(

〈〈〈
Ep,s+1

m,n

〉〉〉
−
〈〈〈
Gp,s+1

m,n

〉〉〉
) − iΩ(t)

(〈〈〈
Ep,s

m,n

〉〉〉
−
〈〈〈
Gp,s

m,n

〉〉〉)

− i
〈〈〈
T p,s

m,n+1

〉〉〉
− i

〈〈〈
T p,s

m+1,n

〉〉〉
+ i m gv

〈〈〈
T p,s

m−1,n

〉〉〉
− i n gc

〈〈〈
T p,s

m,n−1

〉〉〉
,

where gi =
∑

q gi
q(g

c∗
q − gv∗

q ) for i = v, c. A phenomenological pure dephasing γ is included
and takes into account, e.g. longitudinal acoustical (LA) phonon interaction. A cavity loss
considers a finite cavity photon life time: κ. The microscopic polarization is driven via
spontaneous emission of photons / phonons, induced emission and absorption of photons
and modulated by LO-phonon assisted higher-order polarization terms. The classical pump
field is time-dependent, and can also be assumed as probe to calculate absorption spectra
in the linear optics regime, cf. Sec. 3.3. The photon- and phonon assisted ground and
excited state densities are source terms of the dynamics. The equation of the photon- and
phonon-assisted ground state reads:

∂t

〈〈〈
Gp,s

m,n

〉〉〉
= (3.12)

= i [(m − n)ωLO + (p − s)ω0 + i(p + s)κ]
〈〈〈
Gp,s

m,n

〉〉〉

+ i M
〈〈〈
T p+1,s

m,n

〉〉〉
− i M

〈〈〈
T s+1,p

n,m

〉〉〉
∗ + i s M

〈〈〈
T p,s−1

m,n

〉〉〉
− i p M

〈〈〈
T s,p−1

n,m

〉〉〉
∗

+ i Ω(t)(
〈〈〈
T p,s

m,n

〉〉〉
−
〈〈〈
T s,p

n,m

〉〉〉
∗) + i m gv

〈〈〈
Gp,s

m−1,n

〉〉〉
− i n g∗v

〈〈〈
Gp,s

m,n−1

〉〉〉

In the same way, spontaneous emission and absorption processes of LO-phonons are in-
cluded. The dynamics of the excited state is given by:

∂t

〈〈〈
Ep,s

m,n

〉〉〉
= (3.13)

= i [(m − n)ωLO + (p − s)ω0 + i(p + s)κ]
〈〈〈
Ep,s

m,n

〉〉〉

− i M
〈〈〈
T p+1,s

m,n

〉〉〉
+ i M

〈〈〈
T s+1,p

n,m

〉〉〉
∗

− i Ω(t)(
〈〈〈
T p,s

m,n

〉〉〉
−
〈〈〈
T s,p

n,m

〉〉〉
∗) + i m gc

〈〈〈
Ep,s

m−1,n

〉〉〉
− i n g∗c

〈〈〈
Ep,s

m,n−1

〉〉〉
.

The excited state and ground state density differ strongly: a typical quantum optical feature
[CSS75; SZ97]. The ground state couples to the higher and lower photon number state, but
the excited state only to the higher. This asymmetry is lost in the cluster expansion, where
the factorized excited and ground state density are determined via the same equations,
only with a reversed sign ∂t

〈〈〈
a†cacc†c

〉〉〉
c = −∂t

〈〈〈
a†vavc†c

〉〉〉
c, cf. Eq. (2.15). In this context, it is

worth noting, that purely photonic
〈〈〈
c†pcp

〉〉〉
or purely phononic expectation values

〈〈〈
b̄†pb̄p

〉〉〉

do not appear in Eq. (3.11) - (3.13), indicating the full quantum correlation of the combined
electron, LO-phonon and photon dynamics.
Since this set of equations is not closed in terms of n,m, p, s, many orders have to be
calculated to reach convergence. The number of orders depend on the initial conditions, as
well as the strength of the implemented parameters such as the coupling strengths of gv/c

and M . However, this set of equations of motion models the exact solution numerically to
an arbitrary accuracy, cf. Fig. 3.3.
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Figure 3.3: Scheme of general equations of motion within the induction method without
classical pumping.

3.1.3 Initial conditions

A wide range of initial conditions can be chosen to calculate the system dynamics. The
expectation values at t0 = 0 are determined by the following system parameters: the
photon statistics and the mean number of photons in the cavity, the temperature of the
LO-phonon bath and the initial electronic state. In general, the initial conditions for a
cavity field prepared in a Fock or thermal state read:

〈〈〈
Ep,s

n,m

〉〉〉
(t0) = ρE

0 ρpt
p ρph

n δm,n δp,s , (3.14)
〈〈〈
Gp,s

n,m

〉〉〉
(t0) = ρG

0 ρpt
p ρph

n δm,n δp,s ,
〈〈〈
T p,s

n,m

〉〉〉
(t0) = ρT

0 ρpt
p ρph

n δm,n δp,s ,

with ρE
0 :=

〈〈〈
E0,0

0,0

〉〉〉
(t0) =

〈〈〈
a†cac

〉〉〉
(t0), ρG

0 :=
〈〈〈
G0,0

0,0

〉〉〉
(t0) =

〈〈〈
a†vav

〉〉〉
(t0) and ρT

0 :=
〈〈〈
T 0,0

0,0

〉〉〉
(0) =

〈〈〈
a†vac

〉〉〉
(t0) denoting the probability to find the electron in the excited E or in the ground

state G at time t0 = 0 or with an initially assumed transition probability T .
The photon statistics enters in ρpt

p :=
〈〈〈
c†pcp

〉〉〉
. The expectation value for p > 1 differs

for coherent, thermal and non-classical states strongly [Lou83; CKR09]. Different initial
conditions in dependence on the chosen photon-statistics are discussed in Sec. 3.2.3.
Initially, the LO-phonon bath is in thermal equilibrium. Using Wick’s theorem [Mah90] and
including the q-sum of the different wave numbers of the LO-phonon operators, arbitrary
orders in the pure phonon expectation value read:

ρph
n :=

〈〈〈
b̄†mb̄n

〉〉〉
δmn = n!

(
∑

q

|gc
q − gv

q |2
)n

n̄n
LO, (3.15)
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where the mean number of phonons in the LO-phonon mode n̄LO is determined by the
Bose-Einstein distribution n̄LO = [exp(β~ωLO) − 1]−1 and β = (kBT )−1, as long as the
temperature of the bath is fixed and the bath assumption is valid.
To benchmark the induction model, corresponding initial conditions are chosen to compare
the induction model results with two exact analytical solutions: for the electron-photon in-
teraction with the Jaynes-Cummings model (JCM) solution [JC63; SK93] and for electron-
phonon interaction with the independent boson model (IBM) [Mah90; KAK02].

3.2 Benchmarking the induction model

The mathematical induction approach is not an exact solution in the sense, that an an-
alytical formula describes the full quantum kinetics of the combined electron-photon and
LO-phonon dynamics. Analytical solutions, such as the Jaynes-Cummings model [JC63]
or the independent Boson model [Mah90] provide insights into the system dynamics with-
out further numerical evaluation. The mathematical induction model is a framework, that
generates exact solutions up to an arbitrary accuracy, such as the generating function
approach[AHK99]. To proof the accuracy of this numerical solution scheme, the JCM and
IBM solution are reproduced in this section.

3.2.1 Independent boson model:LO-phonon satellite peaks

In the independent boson model, the optical absorption of a two-level system interacting
with an LO-phonon bath at non-zero temperature can be calculated exactly [KAK02].
In case of LO-phonons in GaAs, the absorption spectrum shows a set of satellite peaks
at positions of a multiple of the LO-phonon energy ~ωLO = 36.4 meV. The absorption
spectrum is calculated with Eq. (3.11) and setting the initial value of the polarization to
〈〈〈
T 0,0

0,0

〉〉〉
(0) =: ρT

0 = 0.5, corresponding to an initial excitation via a δ-pulse, and the ground

state density is
〈〈〈
G0,0

0,0

〉〉〉
(0) =: ρG

0 = 1.0. A pure dephasing of γp = 2.5 ps−1 is assumed.
Here, one can apply a phonon operator transformation, to consider an equilibrium with the
ground state (starting with an electron in the valence band, by replacing gc −→ gc−gv and
neglecting the coupling to the valence band state). An interaction with the cavity mode ω0

is not considered. The quantum optical coupling M is set to zero. The equations of motion
are reduced to the electron-phonon dynamics. By Fourier-transforming the solution of the
time domain into the frequency domain, the absorption is calculated in case of a δ−pulse
with [KAK02]:

α(ω) ∝ Re

[〈〈〈
T 0,0

0,0

〉〉〉
(ω)

ρT
0

]

. (3.16)

In Fig. 3.4(left), the dynamics of the imaginary part of the microscopic polarization
〈〈〈
T 0,0

0,0

〉〉〉

is depicted for the first 3 ps. A delta-pulse excites the system initially, and the polarization
decays from its initial value due to the pure dephasing in the system, cf. Eq. (3.11). The
dynamics of the polarization exhibits quantum beats with multiples of the LO-phonon
frequency ωLO = 55.3 ps−1. Here, the converging order is m,n ≥ 8.The main resonance
interferes with the satellites peaks to higher and lower energies, modulating the amplitude
of the polarization during the dephasing process. The strength of the modulation depends
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Figure 3.4: Left: Dynamics of the imaginary part of the polarization. Phonon signatures are
visible in the modulated amplitude of the polarization. Right: The absorption spectrum (log
scale) of the quantum dot shows LO-phonon satellite peaks at multiples of the LO-phonon
energy 36.4 meV. A temperature of 300K is chosen and converging order is m,n ≥ 8.

strongly on the temperature. Here, 300 K are chosen, which leads to multiple LO-phonon
satellite peaks left and right from the QD band gap frequency (shifted to zero plus polaron
shift) in the absorption spectrum, cf. Fig. 3.4(right). The LO-phonon satellite peaks are
broadened, since a pure dephasing is assumed. At exactly a multiple of the LO-phonon
frequency, the satellite peaks appear. Experimentally, LO-phonon peaks in the absorp-
tion spectra are found in measurements, using photoluminescence excitation spectroscopy
[SGB99b; HSB03; HMS+99]. The strength of the satellite peaks depends on the Huang-
Rhys factor of the system. For 0 K, the peak heights of the different LO-phonon satellite
peaks follow from a Poissonian distribution [MK00]:

pi = e−F F i

i!
(3.17)

for the i−th peak with the dimensionless Huang-Rhys factor: F = ∆LO

ωLO
, introducing the

Polaron shift: ∆LO =
g2
eff

ωLO
and g2

eff =
∑

q |gc
q − gv

q |2. This result is reproduced with the
mathematical induction method. For finite temperatures, the dependence of the satellite
peaks to the zero phonon line peaks is more complicate. The mean phonon number de-
pendence is introduced into the system, and thus induced emission, not only spontaneous
emission of LO-phonons must be included. With increasing temperature, the IBM predicts
higher satellite peaks. The induction method reproduces this result, also. In Fig. 3.5, the
temperature dependence of the peak heights of the LO-phonon satellite peaks is depicted.
For 0 K, Eq. (3.17) is exact for the Stokes peaks. At this temperature, only the Stokes peak
appears on the higher energetic side, cf. Fig. 3.5. At elevated temperature, approximately
70 K, the first anti-Stokes peak appears in the absorption spectrum on the lower energetic
side, as well as the weak second Stokes-peak. The temperature dependency is weak due to
the high LO-phonon energy and thus, the small mean phonon number. Also, the effective
phonon coupling determines the peak height: g2

eff. In this value, the size of the quantum dot,
the band gap energy and the effective mass of the electron in the valence and conduction

29



3 Quantum dot cavity quantum electrodynamics

Figure 3.5: Temperature dependence of the LO-phonon satellite peaks. The quantum dot
band gap frequency including polaron shift is set to zero: ωcv − ∆LO = 0.

band state as well as the shape of the QD enters. Hereby, the presented induction model
reproduces the important results of the LO-phonon independent Boson model.

3.2.2 Jaynes-Cummings model (1): Vacuum Rabi splitting

Restricting the system dynamics to the electron-photon interaction, the QD acts as a two-
level quantum emitter within a one mode cavity field [CTDRG89]. In a first step, the
absorption spectrum is derived via Eq. (3.16). Now, the electron-phonon coupling element
is set to zero (gv,c = 0) and, again, a small pure dephasing is assumed. The system is ini-
tially excited with a δ−pulse, resulting in an initial value for the polarization of ρT

0 = 0.5.
No photons are inside the cavity and no further losses are included. Therefore, the sys-
tem dynamics is completely determined by two coupled harmonic oscillators, for which the
Jaynes-Cummings model gives the exact solution in the time domain, cf. Sec. 2.2.
Since photons and electrons are strongly coupled, new quasi-particles are formed: polari-
tons, giving rise to new eigen energies of the system. The derivation starts with the Jaynes-
Cummings model Hamiltonian, restricting Eq. (3.2) to the electron-photon interaction, i.e.
Eq. (2.2). The zero point of the energy is chosen to be in between the conduction and va-
lence band state energy: ωc = ωcv

2 and ωv = −ωcv

2 , cf. Sec 2.2. In the JCM, the dynamics is
divided into subspaces of the Hilbert space, depending on the initially fixed number of pho-
tons involved in the dynamics. The two types of states are: |ΨN

2 〉 = |N, c〉 with N-photons
in the cavity and an excited two-level system c, and |ΨN

1 〉 = |N + 1, v〉 N+1-photons in
the cavity and a two-level system in the ground state v. The Hamiltonian applied to these
states leads to:

H|N + 1, v〉 = ~
(
ω0(N + 1) − ωcv

)
|N + 1, v〉 − ~M

√
N + 1|N, c〉, (3.18)

H|N, c〉 = ~
(
ω0(N) + ωcv

)
|N, c〉 − ~M

√
N + 1|N + 1, v〉. (3.19)
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The states |ΨN
1 〉, |ΨN

2 〉 are obviously no eigenstates of the JCM -Hamiltonian. To calculate
the eigenvalues, each N -part of the Hamiltonian HN is diagonalized, defined by:

(
HN

ij

)
:=

(
〈ΨN

1 |H|ΨN
1 〉 〈ΨN

1 |H|ΨN
2 〉

〈ΨN
2 |H|ΨN

1 〉 〈ΨN
2 |H|ΨN

2 〉

)

= ~

(
−ωcv/2 + (N + 1)ω0 −M

√
N + 1

−M
√

N + 1 ωcv/2 + Nω0

)

.(3.20)

The eigenvalues are determined by the solution of the characteristic polynomial and read:

~ωN
+/− = ~ω0(N +

1

2
) ± ~

√

(ωcv − ω0)2

4
+ M2(N + 1), (3.21)

which results in the Jaynes-Cummings ladder with different rungs and Rabi splitting in
dependence of the photon number N [WRI02; SK93; SKK08]. The vacuum Rabi splitting
(N = 0) and in case of resonance (ωcv = ω0) has the value of ω0

+ − ω0
− = 2 M and is twice

the vacuum Rabi frequency. Due to the electron-photon interaction, the excited state en-
ergy splits up into a dressed state, leading to two resonance frequencies in the system. In
Fig. 3.6(left), the polarization dynamics are plotted. The pure dephasing leads to a decay
of the polarization. After 30 ps, the polariation vanishes. However, the electron-photon
interaction leads to an additional oscillation behavior and modulates the polarization in
dependence of the Rabi frequency of the system. This amplitude modulation is the signa-
ture of the Rabi splitting, depicted in Fig. 3.6(right). The QD band gap frequency is set
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Figure 3.6: Left: Dynamics of the imaginary part of the polarization. Photon signatures are
visible in the modulated amplitude of the polarization. Right: The absorption spectrum of
the quantum dot shows the vacuum Rabi splitting in case of N = 0 photons in the cavity
and resonance between the cavity mode and the QD band gap frequency.

to zero. Instead of one Lorentzian peak at ω = 0, two peaks appear, marking the polariton
frequencies in case of N = 0 photons in the cavity. From this kind of spectra, the electron-
photon coupling strength can be determined [KGK+06; WNIA92; YSH+04; MKH08].
In case of a detuning δ between the QD resonance and the cavity mode, which exceeds the
coupling strength δ ≫ M , the M -contribution in the square root in Eq. (3.21) is neglibible
and the eigenenergies are again the QD band gap frequency and the cavity frequency, alone.
In this case, two peaks are visible in the spectrum. A large resonant peak of the QD and a
small cavity peak, only weakly driven by the initial delta-pulse. In the transition regime,
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when the detuning δ ≈ M , the polariton state starts to form, which leads close to the
resonance to an anti-crossing between the cavity mode and the QD band gap frequency.
In Fig. 3.7, the QD spectrum is plotted for different detunings (y-axis) of the cavity mode

Figure 3.7: Benchmark: anti-crossing for small detunings between the cavity mode and the
QD band gap frequency: pure dephasing γp = 0.002 fs−1, coupling strength M = 0.5 ps−1

and no photons in the cavity N = 0. Detuning ωcv − ω0 = δ on y-axis, x-axis is the
absorption frequency, the anti-crossing is clearly visible.

from the QD band gap frequency (x-axis). The electron-coupling strength is chosen as
M = 0.5 ps−1 and no photons are initially in the cavity: N = 0. If the detuning is in the
order of magnitude larger than the electron-photon coupling strength, two peaks appear
in the spectrum, e.g. δ = 5.0 fs−1. However, with decreasing detuning, the cavity peak
becomes larger, until the polariton state starts to form and a splitting appears, e.g. δ ≈ 0.
Both, the cavity frequency and the QD band frequency changes. A typical anti-crossing
behavior is predicted by the exact model of Jaynes and Cummings and here, calculated
via the induction method visible in Fig. 3.7.

3.2.3 Jaynes-Cummings model (2): Collapse and revivals

In the JCM, also the time dynamics of the observables are calculated exactly and addition-
ally, different photon-statistics can be computed via a superposition of the general JCM
solution, cf. Sec 2.2. Hence, another benchmark for the induction model is the reproduc-
tion of these photon-statistics induced dynamics, such as the well-known phenomenon of
collapse and revivals in case of an initially coherent superposition of photon states in the
cavity [ENSM80; RWK87; NSME81]. The system is closed, as assumed in the JCM. No
dissipative processes, e.g. cavity losses or pure dephasing are considered: κ = γp = 0µeV.
The QD is at t0 = 0 in the excited state (

〈〈〈
E0,0

0,0

〉〉〉
(t0) = 1.0). In dependence on the initial

preparation of the cavity field, the Rabi oscillations differ strongly. The photon field can
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be prepared in the Fock state (a), thermal state (b) or in the coherent state (c).
The initial conditions for a photon field in the Fock state read:

ρpt
p =

{ N !
(N−p)! for p ≤ N,

0 for p > N,
(3.22)

where N is the number of photons in the cavity mode and p the order of the photon
correlation, e.g. ρpt

2 =
〈〈〈
c†c†cc

〉〉〉
= N(N − 1) for p = 2. The expectation value is zero for all

p, which exceed N . In the Fock state, the mean photon number is exactly known, leading
to a complete uncertainty in the phase relation of the photons. In this perspective, the
Fock state is an extremely squeezed photon state and maximally non-classical [MW95]. In

Figure 3.8: The excited state dynamics for different photon-statistics of the cavity mode:
(a) Fock state N = 0, (b) thermal state N = 0.4 and (c) coherent state N = 8, calcu-
lated within the induction model. In case of vanishing electron-phonon interaction, the
induction model reproduces the Jaynes-Cummings solution, not distinguishable in the plot
(converging order: p, s ≥ 60 for coherent and thermal states).

Fig. 3.8(a), the solution of the excited state dynamics (
〈〈〈
E0,0

0,0

〉〉〉
(t)) is plotted for a cavity

field prepared in the Fock state. Rabi oscillations are visible with a Rabi frequency of
ΩN = M

√
N + 1. The quantized Rabi frequency includes the spontaneous emission of

photons, which is not included in the semi-classical Rabi frequency. Even if there are no
photons in the cavity, Rabi oscillations occur, as long as the electron is initially in the
excited state. In Fig. 3.8(a), N is set 0 to prove this remarkable result of the JCM [JC63;
SK93]. Vacuum Rabi oscillations are experimentally accessible in various experimental
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setups [BSKM+96; KRM+10]. The vacuum Rabi oscillation case is chosen here, to consider
the strongest possible quantum correlation between the QD and the cavity mode.
If the photon field is prepared in a thermal state, the mean photon number is calculated
with the Bose-Einstein statistics. The initial value is determined by Wick’s theorem. Like
in the case of the LO-phonons, cf. Sec. 3.1.3, the result reads:

ρpt
p = p! (N)p , (3.23)

with N = [exp(β~ω) − 1]−1 and β = (kBT )−1. In Fig. 3.8(b), irregular oscillations of the
excited state are observable (N = 0.1). A pattern is not visible and not to be expected.
Different Rabi frequencies interfere with each other. The induction model reproduces this
complicated oscillation pattern, predicted by the JCM [SZ97; SK93]. The thermal statistics
needs very high-orders in the electron-photon coupling element. The photon-correlations
increase fast and high numbers exceed easily typically numerical number formats. The
solution, depicted in Fig. 3.8(b), takes into account orders up to p = 60. In principle, the
solution cannot converge for very high N . Higher orders in the photon field are driven very
strongly and all orders exist with a large N , cf. Eq. (3.23). However, observables such as
the photon density or the g(2)(t, 0)-function, as well as the electron densities depend on
these higher order correlations only very weakly due to the increasing order in the electron-
photon coupling. Due to this fact, the solution converges and the limits are imposed only
by the numerical implementation and the computer facilities.
Finally, the photon field can be prepared in the coherent state. Glauber-states [Gla63] are
assumed. The corresponding expectation values read:

ρpt
p =

∑

m,n

N
m+n

2 e−N

√
m!n!

〈n|c†pcp|m〉 = Np. (3.24)

The remarkable phenomenon of periodic collapses and revivals are seen in Fig. 3.8(c) for
N = 8 [ENSM80]. Collapses and revivals are experimentally seen in (Ref. [RWK87]). This
phenomenon results from an interference between different orders in the photon-correlation
and is extremely sensible to deviations from the exact solution of the JCM [Rob03]. The
solution, depicted in Fig. 3.8(c), takes into account orders up to p ≥ 60. If the dynamics
is calculated for longer times t ≥ 20 ns, higher order in p need to be calculated, since
higher orders of the quantum correlations enter into the observable dynamics. However,
the solution of the JCM (not distinguishable in the plot) is reproduced and proves that
the induction model contains the features of a coherently-driven JCM.
The results in Fig. 3.8(a),(b) and (c) are compared with the analytic and numerical solu-
tions of the JCM [SK93] and are found to be in complete agreement. Thus, equations (3.12)
- (3.13) reproduce the JCM in the equation of motion approach, if the electron-phonon
coupling is set to zero.

3.2.4 Jaynes-Cummings model (3): Analytical solution

Concluding the benchmark of the induction model regarding the electron-photon interac-
tion, an analytical solution of the excited state density, known from the JCM, is derived to
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clarify the induction model without a numerical evaluation. The vacuum Rabi oscillation
of the excited state density, depicted in Fig. 3.8(a), reads:

〈〈〈
E0,0

0,0

〉〉〉
(t) = cos2(M t).

The Rabi splitting is proportional to the Rabi frequency, here the Rabi frequency is identi-
cal with the electron-light coupling element, since initially there are no photons in the cavity
N = 0. The equations of motion, needed to derive Eq. (3.25), read with 1 = a†cac + a†vav:

∂t

〈〈〈
E0,0

0,0

〉〉〉
= 2Im

[

M
〈〈〈
T 1,0

0,0

〉〉〉]

(3.25)

∂t

〈〈〈
T 1,0

0,0

〉〉〉
= −i M

〈〈〈
E0,0

0,0

〉〉〉
− i M(2

〈〈〈
E1,1

0,0

〉〉〉
−
〈〈〈
c†c
〉〉〉
) (3.26)

∂t

〈〈〈
c†c
〉〉〉

= −2Im
[

M
〈〈〈
T 1,0

0,0

〉〉〉]

= −∂t

〈〈〈
E0,0

0,0

〉〉〉
. (3.27)

Now, the photon-assisted excited state density is not driven in case of vacuum Rabi os-
cillations, and the set of equations of motion is closed. For convenience, the equations
are solved for the difference between the photon denstiy and the excited state density
(W =

〈〈〈
c†c
〉〉〉
−
〈〈〈
a†cac

〉〉〉
):

∂t(
〈〈〈
c†c
〉〉〉
−
〈〈〈
E0,0

0,0

〉〉〉
) = ∂tW = −4Im

[

M
〈〈〈
T 1,0

0,0

〉〉〉]

(3.28)

∂t

〈〈〈
T 1,0

0,0

〉〉〉
= i M(

〈〈〈
c†c
〉〉〉
−
〈〈〈
E0,0

0,0

〉〉〉
) = i M W (3.29)

→ ∂2
t W = −(2 M)2W. (3.30)

This simple differential equation is solved via a cosine ansatz, bearing in mind the initial
condition of W (0) = −1:

W (t) =
〈〈〈
c†c
〉〉〉
(t) −

〈〈〈
E0,0

0,0

〉〉〉
(t) = − cos(2 M t) = − cos2(Mt) + sin2(Mt), (3.31)

which gives the solution of the inversion, but also for the excited state dynamics. The
initial conditions verify:

〈〈〈
E0,0

0,0

〉〉〉
(t) = cos2(M t). The Rabi frequency is proportional to M ,

proving, that the induction model includes the JCM solution analytically. However, higher
order in this truncation scheme are difficult to derive, and numerical evaluations become
necessary.
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3.3 LO-phonon QD cavity-QED: LO-phonon assisted cavity
feeding

Cavity quantum electrodynamics (CQED) studies the interaction between a single radiation-
field mode and a quantum emitter, here a semiconductor quantum dot (QD). The pursuit
of QD-CQED is motivated by the possibility to tailor the quantum emission properties,
e.g. the frequency and photon-statistics, within ultrasmall volumes [KGK+06; BSL+09].
Semiconductor technology paves the way for the design of monolithic structures, such as
micropillars, microdisks or photonic crystal nanocavities [MKB+00; KGK+06; BSL+09].
In these systems, typical cavity-QED phenomena are demonstrated, e.g. Vacuum Rabi
splitting and Purcell enhancement [LVT08], entanglement [TPT06; HPS07] and photon
antibunching [MKB+00; WKU+05]. These observations show that quantum information
tasks are achievable and technological applications are on the verge of realization like single
and entangled photon sources or low threshold nanolasers.
Recent studies of QD-CQED show intense cavity emission, and even lasing, when the cavity
mode is not in resonance with the QD. This cavity feeding is disussed widely in the litera-
ture and can be attributed to the solid-state environment of the QD [TKH+09; SDG+09].
Experimental and theoretical work confirm that longitudinal acoustical (LA) phonons play
a crucial role for small detunings (few meV) and quasi-excitonic transitions for larger detun-
ings [MKH08; Hoh10; WVT+09; TS10]. In case of large detunings, phonons are typically
not taken into account as a feeding channel.
In this section, the LO-phonon interaction comes into focus and is investigated within the
induction model approach to simulate the strong coupling signatures for an InAs/GaAs-
quantum dot in a microcavity for different detunings, in particular for high temperatures.
Strong coupling signatures become visible, if the cavity is one LO-phonon energy detuned
from the QD transition energy. A clear anti-crossing is visible for the Stokes position, the
anti-Stokes anti-crossing is weaker but still noticeable at 300 K.
The calculation is based on the general set of equations, cf. Eq. (3.11)-(3.13), derived by the
mathematical induction, cf. Sec. 3.1 with given initial conditions. To investigate the impact
of the LO-phonons, modified Rabi oscillations of the excited state density are plotted and
an analytical expression for the Rabi frequency is derived. First, the initial conditions need
to be discussed to set up the general set of equations of motion, adjusted to the initial
conditions.

3.3.1 Initial conditions

The absorption spectrum is calculated with Eq. (3.11) by including phenomenologically
a pure dephasing γ = 2 (ps)−1. The system is excited with a delta pulse Ωδ = Ω(t)δ(t),
creating an initial value of the polarization to

〈〈〈
T 0,0

0,0

〉〉〉
(0) =: ρT

0 = 0.5 and the ground state

density is
〈〈〈
G0,0

0,0

〉〉〉
(0) =: ρG

0 = 1.0. The delta pulse creates a polarization on a time scale, that
the electronic system and the LO-phonon bath remains in equilibrium at t = 0. Material
characteristics are implemented in the choice of initial conditions, here, in the calculation
of the normalized effective form factor |gc

q − gv
q | and the wave number (q) dependency,

as well as the electron-photon light coupling element M . The LO-phonons are initially in
equilibrium with the ground state density, which results in an operator transformation, i.e.
gv = gv∗ = 0 and gc −→ gc − gv, cf. 3.2.1. The LO-phonon bath is assumed to be initially
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in thermal equilibrium, where the mean number of phonons in the LO-Mode n̄LO is given
with the Bose-Einstein statistics, as long as the temperature of the bath is fixed. For t > 0,
the LO-phonon interaction is included beyond the bath assumption, since electrons and
phonons are not in equilibrium anymore and non-Markovian contributions are of interest.

3.3.2 Equations of Motion

The observable of interest to calculate the absorption is the microscopic polarization. The
dynamics is calculated via

∂t

〈〈〈
T p,s

m,n

〉〉〉
= − i [ωcv − (p − s)ω0 − (m − n)ωLO − i(p + s)κ − iγ]

〈〈〈
T p,s

m,n

〉〉〉
(3.32)

− ip M∗
〈〈〈
Ep−1,s

m,n

〉〉〉
− iM∗(

〈〈〈
Ep,s+1

m,n

〉〉〉
−
〈〈〈
Gp,s+1

m,n

〉〉〉
)

− iδp
0δs

0δ
m
0 δn

0 Ωδ − i
〈〈〈
T p,s

m,n+1

〉〉〉
− i

〈〈〈
T p,s

m+1,n

〉〉〉
− i n g2

eff

〈〈〈
T p,s

m,n−1

〉〉〉
.

A phenomenological pure dephasing γ is included and takes into account the LA-phonon
interaction. A cavity loss considers a finite photon life time: κ. The equations of the photon-
and phonon-assisted ground state and excited state read:

∂t

〈〈〈
Gp,s

m,n

〉〉〉
= i [(m − n)ωLO + (p − s)ω0 + i(p + s)κ]

〈〈〈
Gp,s

m,n

〉〉〉
(3.33)

+i M
〈〈〈
T p+1,s

m,n

〉〉〉
− i M

〈〈〈
T s+1,p

n,m

〉〉〉
∗ + i s M

〈〈〈
T p,s−1

m,n

〉〉〉
− i p M∗

〈〈〈
T s,p−1

n,m

〉〉〉
∗,

∂t

〈〈〈
Ep,s

m,n

〉〉〉
= i [(m − n)ωLO + (p − s)ω0 + i(p + s)κ]

〈〈〈
Ep,s

m,n

〉〉〉
(3.34)

−i M
〈〈〈
T p+1,s

m,n

〉〉〉
+ i M

〈〈〈
T s+1,p

n,m

〉〉〉
∗ + i m g2

eff

〈〈〈
Ep,s

m−1,n

〉〉〉
− i n g2

eff

〈〈〈
Ep,s

m,n−1

〉〉〉
.

Via Eq. (3.32)-(3.34), the LO-phonon assisted cavity feeding can be calculated. Note, the
ground state density does not couple to the LO-phonons due to the initial conditions and
the applied operator transformation. The δ−pulse is included only in the polarization for
p = s = n = m = 0, which corresponds to the linear excitation regime.

3.3.3 LO-phonon QD cavity-QED: Optical absorption spectrum

In Fig. 3.9, the full absorption spectrum α(ω,∆) of the LO-phonon QD-CQED is depicted
for a temperature of 300 K with ω as the Fourier transform frequency and the detuning
between the QD and the cavity mode: ∆ = ωcv − (ω0 − ∆LO). As band gap frequency

is 1.5 eV chosen [Sti01]. Due to the polaron shift (∆LO =
g2
eff

ωLO
), the main peak is shifted

compared to the case without LO-phonons. For zero detuning ∆ = 0, the cavity mode and
the band gap frequency are on resonance and an anti-crossing is visible, which depends
on the light coupling strength M , cf. Sec. 3.2.2. The anti-crossing is a signature for strong
coupling between the QD and the cavity mode [LVT09; VLT09]. In time domain, Rabi
oscillations occur (not shown). Their frequency depends linearly on the coupling strength.
The higher the Rabi frequency, the larger is the Rabi splitting of the QD peak. For minor
detunings, longitudinal acoustical (LA) phonon assisted cavity feeding occurs, but is not
considered in this investigation [TS10; Hoh10; SDG+09]. The mismatch between cavity
mode and QD frequency is compensated through LA-phonon emission or absorption. This
mechanism secures strong coupling features for small detunings, in order of typical longitu-
dinal acoustical phonon frequency (few meV). It is not incorporated here, since it is focused
on larger detunings, a typical longitudinal optical phonon frequency in GaAs (36, 4 meV).
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Figure 3.9: Optical absorption spectrum of an LO-phonon QD-cavity system at 300 K.
Three anti-crossings are visible: (1) in case of resonance between band gap frequency and
cavity mode ∆ = 0, which is dominated by the light coupling strength M , (2) in case of a
detuning of ∆ = −ωLO, the Stokes contribution, which depends strongly on the effective
phonon coupling strength and (3) in case of a detuning of ∆ = ωLO, the Anti-Stokes
contribution, only visible for temperatures higher than 70 K, strongly depending on the
mean phonon number.

If the cavity mode is detuned more than 10 meV from the band gap frequency, the Rabi
splitting vanishes [Hoh10]. The spectrum is reduced to the band gap resonance peak and
the cavity peak, cf. Sec. 3.2.2. But when the cavity mode matches an LO-phonon satellite
peak, the anti-crossing reappears. Strongly for the Stokes peak, at a detuning of ∆ = −ωLO,
weaker, but still visible at room temperature, the anti-Stokes contribution at ∆ = ωLO.
The anti-crossing at a detuning position depends strongly on the material parameter, on
the LO-phonon and light coupling strength. In this picture, the strong coupling signature
is transported via an LO-phonon emission (Stokes contribution) or an LO-phonon ab-
sorption (anti-Stokes). Since the mean LO-phonon number at room temperature does not
exceed n̄LO < 0.4 for the given LO-phonon energy in GaAs, cf. Fig. 3.14, the anti-Stokes
contribution is small, in contrast to the Stokes-contribution, which is even strong at low
temperatures due to spontaneous emission of LO-phonons.
For different detunings, the Rabi oscillations have a different frequency. In the Jaynes-
Cummings model, which describes the main resonance without phonons, the detuning ap-
pears in a modified Rabi frequency, generalized as Ω =

√

M2(N + 1) + ∆2 =
√

M2 + ∆2

for vacuum Rabi flopping N = 0, cf. Sec. 3.2.2 and Eq. (3.21). The detuning leads to higher
Rabi frequency at the price of a reduced oscillation amplitude [SZ97]. Here, the LO-phonon
interaction introduces other resonance frequencies in the system and the Rabi frequency
cannot be described with the generalized formula given in the JCM.
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Figure 3.10: Parameter plots for a detuning of ∆ = −ωLO. Left: Rabi splitting for dif-
ferent electron-light coupling strength M (y-axis) for an effective phonon coupling of
geff = 75 ps−2. Right: Rabi splitting for different effective phonon coupling strengths geff

(y-axis) and an electron-light coupling of M = 0.75 ps−1.

By changing the numerical parameter, the dependence of the Rabi splitting on the cou-
pling strength can be studied. In Fig. 3.10(left), the dependence of the Rabi splitting on
the electron-photon strength M is depicted for a fixed electron-phonon coupling strength.
The cavity and the QD are one LO-phonon energy detuned: ∆ = −ωLO and an effective
electron-phonon coupling strength of geff = 75 ps−2 is chosen and in agreement with exper-
imental data [HBG+01]. For a vanishing coupling element M , the splitting also vanishes,
since no interaction can take place. For a coupling element M , which is larger than 1

2γp, the
splitting appears. For further increment of M , the splitting increases also. First linearly,
predicted by the JCM, but the deviation from the linear dependence is visible and caused
by the presence of LO-phonons and LO-phonon assisted cavity feeding. In Fig. 3.10(right).
The dependence of the Rabi splitting on the effective phonon-coupling strength geff is plot-
ted for a electron-light coupling element of M = 0.75 ps−1. If geff = 0, the cavity mode and
the QD are spectrally too far separated and since no feeding via LO-phonon can occur, no
strong coupling signature is visible. The Rabi splitting is zero. For increasing geff, the Rabi
splitting occurs fast and in a non-linear dependence.
Now, cavity feeding via LO-phonons drives the system, but with a decreased oscillator
strength due to the spectral separation. Interestingly, the Rabi splitting saturates slightly,
if only the effective phonon strength of the system is increased. This indicates a complicated
correlation between LO-phonon frequency, LO-phonon coupling strength, electron-photon
coupling and detuning, as well as the temperature dependent LO-phonon mean number.
An approximated functional dependence is derived in the next section via the Huang-Rhys
factor.
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3.3.4 Phonon-induced Rabi frequency modification

Now, three cases need to be discussed, as shown in Fig. 3.9 by investigating the vacuum
Rabi oscillation for given detuning and without external light field, i.e. Ωδ ≡ 0. It is as-
sumed that the QD is initially in the excited state, ρE

0 = 1 and ρT
0 = ρG

0 = 0. The equation
of motion set Eq. (3.32)-(3.34) still applies. In Fig. 3.11, the dynamics of the excited state
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Figure 3.11: Dynamics of the excited state density for different detunings at 3 K (black,
dotted line) and at 300 K (orange, solid line). (1) shows the Rabi oscillation for zero
detuning, which amplitude is modulated at 300 K due to the presence of LO-phonons.
(2) depicts the Rabi oscillation for a detuning of one LO-phonon frequency below the QD
frequency. The Rabi oscillation frequency is strongly modified and anharmonic oscillation
behavior is visible at 300 K. In case of a detuning of one LO-phonon frequency above the
QD frequency (3), no Rabi oscillation is visible at 3 K. However, at 300 K LO-phonon cavity
feeding takes place and a Rabi oscillation occur, with a reduced oscillation amplitude.

density (〈E0,0
0,0(t)) is depicted for different detunings and for 3 K (dotted, black line) and

300 K (solid, orange line). Initially, the QD is in the excited state and no photon is in the
cavity.
If the cavity mode is in resonance with the QD band gap frequency (1), Rabi oscillations
occur with an amplitude of 1 and a Rabi frequency equal to the JCM solution Ω1 = M . At
300 K, a beating occurs, but does not change the Rabi frequency, instead the amplitude is
modulated in dependence on the effective phonon-coupling [CRCK10; AHK99]. This mod-
ulation cannot be seen in the absorption spectrum due to the strong pure dephasing. If the
cavity is detuned to the Stokes peak (2), the excited state oscillates also with an amplitude
of 1 but with a modified Rabi frequency Ω2. The temperature dependence does not change
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the modified Rabi frequency at 300 K, which remains smaller than in the case of reso-
nance. Remarkably, the amplitude is not decreased although the cavity mode is detuned
from the band gap frequency of QD. In case of a detuning to the anti-Stokes peak (3), the
temperature dependence is very important and strong. At 3 K, no oscillation occur. The
cavity feeding is not active for low temperature, since the anti-Stokes process depends on
the mean LO-phonon number, which is at 3 K due to the high energy of 36.4 meV negli-
gible. Due to the lack of cavity feeding, the excited state density oscillates very fast with
a negligible amplitude. However, at 300 K, cavity feeding occurs. The phonon occupation
number is increased to 0.3 and an oscillation occurs with the same modified Rabi frequency
Ω3 = Ω2, compared to the Stokes case, but with a decreased amplitude. The amplitude,
but not the Rabi frequency depends on the mean phonon number.
The modified Rabi frequency due to the LO-phonon interaction depends on the oscillator
strength at the given frequency. In the IBM [Mah90], the absorption spectrum of a QD
interacting with an LO-phonon bath can be calculated exactly. For 0 K, the peak height-
s/oscillator strengths of the different LO-phonon satellite peaks follow from a Poissonian
distribution in comparison to the main resonance:

ξi = e−F F i

i!
(3.35)

for the i−th peak with the dimensionless Huang-Rhys factor: F = ∆LO

ωLO
[MK00]. Since the

splitting depends on the peak height/oscillator strength, the splitting at the Stokes (2) and
anti-Stokes position (3) can be derived from the splitting (Ω1 = M) in case of resonance
between QD band gap frequency and cavity mode (1) and is decreased via the Huang-Rhys
factor for i = 1 (first peak from the main resonance):

Ω2

Ω1
≈ ξ1 =

g2
eff

ω2
LO

e
−

∆LO
ωLO −→ Ω2 ≈ M g2

eff

ω2
LO

e
−

∆LO
ωLO . (3.36)

This expression is not exact for elevated temperatures. The modified Rabi frequencies
are only proportional to the Huang-Rhys factor, since other contributions enter in the
electron dynamics, e.g. the detuned Rabi frequency from the QD band gap frequency,
and the temperature is 300 K. However, parameter studies, cf. Fig. 3.10, suggests an
approximately linear dependence of the anti-crossing at the Stokes and anti-Stokes position
on the electron-photon coupling M and the effective phonon coupling g2

eff. The modulation
of the amplitude shows a more complex behavior: anharmonicities appear, cf. Fig. 3.11(2)
and (3). More frequencies enter the system dynamics at 300 K due to the LO-phonon
induced beating.
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3.4 LO-phonon QD cavity-QED: Degradation of
photon-statistics

Beyond spectral properties of the LO-phonon QD cavity-QED system, discussed in the last
section, with inherent cavity feeding due to the presence of LO-phonons, the time-dynamics
include other observables of interest. Next to the polarization, observables such as the pho-
ton density or the normalized intensity-intensity correlation function g(2)(t, 0)-function are
affected strongly by the semiconductor environment [UGA+07; MIM+00; AVB+09]. In gen-
eral, the semiconductor is assumed to destroy quantum correlation via enhanced dephasing
[HPS07]. In this section, the induction model is applied to the LO-phonon QD cavity-QED
and demonstrates an enhancement of quantum correlation, induced by phonons, leading
to an LO-phonon induced anti-bunching of the cavity field [CRCK10].
Photon-photon correlations are in focus of current research to exploit intrinsic features
of the quantized light field, such as photon-bunching (g(2)(t, 0)>1) for measurement tech-
niques [VSDS05; BO06; SBS06], coherence properties of laser emission above threshold
(g(2)(t, 0)=1) [Wie09; UGA+07; AVB+09], or anti-bunching (g(2)(t, 0)<1), e.g. single-photon
emission (g(2)(t, 0)=0) to control quantum information processes, quantum cryptography
protocols or measurement techniques [YKS+02; BUA+05; BSPY00; LST+09]. Since QDs
are grown and controlled in their optical properties [KGK+06; YSH+04] via growth tech-
niques, strain [SWL+09], lateral fields [VUH+07], etc., quantum emitter sources based
on semiconductor QDs are of great interest. To tailor the quantum light emission from
QDs, embedded in a semiconductor environment, many-particle contributions, such as LO-
phonons need to be taken into account. In particular in the single-photon limit, in which
the fluctuation around the mean value is in the same order of magnitude of the mean num-
ber itself, quantum correlations are strongly modulated by for example the LO-phonon
interaction. The single-photon limit has gained great importance recently. Unfortunately,
quantum correlations are highly sensible to factorization approaches, but at the same time,
those correlations are feasible for technological application, such as entanglement or anti-
bunching.
To simulate and investigate the complex system dynamics on a microscopical level, quan-
tum correlations must be treated as exact as possible. Therefore, the induction model is
applied to the single-photon limit to demonstrate the strength of this approach, to treat two
interactions simultaneously up to an arbitrary accuracy, including non-Markovian effects
and the impact of LO-phonons on the g(2)(t, 0)-function and the photon density. Hereby,
the induction model as a theoretical framework reveals possibilities to control the quantum
light emission via external parameters such as the temperature and proves the importance
of non-Markovian, non-factorized theoretical frameworks in the search for advantageous
properties of semiconductor quantum optics.

3.4.1 Initial conditions and equations of motion

At the starting point, the QD is brought via a short pulse in the excited state on a time
scale that the LO-phonon bath remains at t = 0 in equilibrium: ρE

0 = 1. The cavity is
prepared either in a Fock or thermal light state. The initial conditions are calculated via
the method described in 3.1.3 with Eq. (3.14). The LO-phonon bath is assumed to be
initially in equilibrium and the mean number of phonons in the LO-Mode n̄ωLO

is given
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with the Bose-Einstein statistics. Two situations are investigated: 3 K and 300 K. No
external pumping is assumed, as well as for investigation purposes, losses are not included:
κ = 0 and γp = 0. The cavity mode (ω0) and the QD transition (ωcv) are in resonance
with respective to the polaronshift ωcv = ω0 + ∆LO. The LO-phonon bath is initially in
equilibrium with the ground state, cf. Sec. 3.3. In this case, the set of equations of motion
Eq. (3.11)-(3.13) are simplified. The QD transition dynamics read:

∂t

〈〈〈
T p+1,p

m,n

〉〉〉
= i(m − n)ωLO

〈〈〈
T p+1,p

m,n

〉〉〉
− i(p + 1) M

〈〈〈
Ep,p

m,n

〉〉〉
− ingeff

〈〈〈
T p+1,p

m,n−1

〉〉〉
(3.37)

− iM(
〈〈〈
Ep+1,p+1

m,n

〉〉〉
−
〈〈〈
Gp+1,p+1

m,n

〉〉〉
) − i

〈〈〈
T p+1,p

m,n+1

〉〉〉
− i

〈〈〈
T p+1,p

m+1,n

〉〉〉
.

Due to the quantum optical dynamics, without external pumping, the annihilation and cre-
ation operators of the photon field remain in constant relation. Only transitions are driven
with one more or one less annihilation operator than the creation operator. In comparison
to Eq. (3.11), p, s is replaced by only p. Excited state and ground state dynamics have
always the same number of creation and annihilation operators. Non-diagonal contribution
are not driven in this setup.

∂t

〈〈〈
Gp,p

m,n

〉〉〉
= i(m − n)ωLO

〈〈〈
Gp,p

m,n

〉〉〉
− 2Im

[
M
〈〈〈
T p+1,p

m,n

〉〉〉
+ p M

〈〈〈
T p,p−1

m,n

〉〉〉]
(3.38)

∂t

〈〈〈
Ep,p

m,n

〉〉〉
= i(m − n)ωLO

〈〈〈
Ep,p

m,n

〉〉〉
+ 2Im

[
M
〈〈〈
T p+1,p

m,n

〉〉〉]
+ igeff(m

〈〈〈
Ep,p

m−1,n

〉〉〉
− n
〈〈〈
Ep,p

m,n−1

〉〉〉
).

With Eq. (3.37)-(3.38), the combined, and fully correlated electron, photon and phonon
dynamics can be evaluated for different photon-statistics and phonon initial values, e.g. the
temperature. The results reported here apply also to other materials, as long as the Rabi
frequency ΩN = M

√
N + 1 with N photons in the cavity is in the order of magnitude

of the electron-phonon coupling strength g
(c,v)
q , i.e. the strength of the electron-phonon

interaction is comparable with the strength of the electron-photon interaction:

ΩN

|gc
q − gv

q |
≤ 100. (3.39)

3.4.2 LO-phonon induced anti-bunching

Since the induction model evaluates the set of equations up to an arbitrary accuracy, it is
now possible to study the impact of the LO-phonons on the quantum optical properties
of the cavity mode, such as the photon-statistics. The interplay between the phonon- and
photon interaction via the electronic system is most interesting in the regime, in which
neither of them is dominant, i.e. the Rabi frequency ΩN and the effective coupling strength

geff :=
√∑

q |gc
q − gv

q |2 are in the same order of magnitude. In that case, none of the

interactions is negligible and surprising physics occur. As a first example, it is shown that
the electron-phonon interaction transforms a classical light state, such as a thermal light
state, into a non-classical one [CRCK10].
Starting with a cavity prepared in a thermal state with initial conditions, cf. Sec. 3.2.3,
and a mean photon number of N = 0.25. A thermal field at a frequency of the typical
transition frequency of an InAs/GaAs QD can hardly reach this mean photon number value
at reasonable temperatures. The initialization of the cavity mode can be intense tunable
narrow-band thermal sources, or thermal light beams used for imaging [BH84; GBBL04].
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Thus, the cavity mode is externally pumped and prepared artificially in a thermal state of
N = 0.25. Higher values for the mean photon number are possible, but results in a very
strong and photon dominated dynam-
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Figure 3.12: Thermal light distribution.

ics, for which the LO-phonon interac-
tion becomes negligible. Here, the single-
photon limit is investigated. The mean
photon number for the thermal light field
is chosen, that three or more photons
have a negligible probability. In Fig. 3.12,
the three-photon probability (p3) is plot-
ted for different mean photon numbers
of the thermal light field, calculated via
pn = Nn/(N +1)n+1 [SZ97]. Clearly, to
limit the dynamics in the single-photon
limit, i.e. p3 ≪ 1%, the mean photon number must be clearly below 0.3. The thermal mixed
state probability increases fast for higher mean photon numbers. Depicted in Fig. 3.12, a
higher mean photon number N > 0.6 results in three-photon probabilities of about 5%,
which are not negligible and beyond the single-photon limit.
In Fig. 3.13(a), the dynamics of the photon density is plotted for different temperatures.
The QD is initially in the excited state and the photon density starts with N = 0.25 and
increases fast, since in the spontaneous emission process a Fock photon is created and the
QD electron relaxes into the ground state. The maximum value of the photon density is
N = 1.25. Due to the strong coupling between the cavity mode and the QD electron, the
photon is absorbed again. The thermal light field introduces many Rabi frequencies to the
system and an irregular oscillation pattern is the result. At 3 K(dotted, black line), no
LO-phonon signatures are visible. The JCM solution for a thermal light field is reproduced
[SK93]. At 300 K(orangle, solid line), the oscillation pattern is changed. A modulation of
the Rabi amplitude appears. This beating frequency decreases the amplitude, in general.
At the right hand side, Fig. 3.13(b), the intensity spectrum is plotted, i.e. the Fourier
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Figure 3.13: (a) Photon density of a cavity mode in the thermal state for two temperatures
of the LO-phonon bath. At 3 K (black, dotted line), the photon density fluctuates strongly.
At 300 K (orange, solid line), the fluctuation is decreased. (b) Fourier transform of the
photon density time trace. LO-phonon peaks appear at elevated temperatures.
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Figure 3.14: (a) Mean phonon number for different temperatures for GaAs LO-phonon
energy. (b) g(2)(t, 0) of a cavity mode in the thermal state for two temperatures of the LO-
phonon bath. At 3 K (black, dotted line), g(2)(t, 0) fluctuates strongly. At 300 K (orange,
solid line), the fluctuation is decreased and leads to a lower average value of g(2)(t, 0) from
the bunching regime 1.1 at 3 K to 0.8 at 300 K.

transform of the photon density dynamics for 3 K and 300 K. At 3 K (dotted, black
line), three peaks (75, 105, 130 GHz) indicate the multiple set of Rabi frequencies of the
thermal light field. The higher the mean photon number N , the more peaks appear and
the single peaks become more pronounced. All peaks at 3 K can be contributed to the
electron-photon interaction, alone. An LO-phonon contribution is not visible. However, at
300 K (orange, solid line), additional peaks appear (around 50, 65, 90 Ghz). These peaks
originate from the LO-phonon interaction and act as local oscillator, modulating the pho-
ton and electron dynamics with different temperature dependent beating frequencies. In
particular, the peaks at 60 GHz and 87 GHz modulate the main oscillater frequency in
between at 75 GHz. The spacing between the LO-phonon assisted peaks can be expressed
via the mean LO-phonon number and the LO-phonon frequency, quantitatively n2

LOωLO.
For low temperatures T < 70 K, the mean phonon number is negligible, cf. Fig. 3.14(a).
However, for elevated temperature, e.g. room temperature, the mean phonon number is
around nLO = 0.3 and the LO-phonons introduce a beating phenomenon into the sys-
tem dynamics. Remarkably, this quantum beating acts as a local oscillator, comparable
to a beam splitter and degradates the photon-statistics of the photon field. In contrast to
the photon density in Fig. 3.13(a), on which the LO-phonon interaction has only a minor
impact, the g(2)(t, 0)-function of the cavity field is strongly changed. The time trace of
the g(2)(t, 0)-function is depicted in Fig. 3.14(b) for 3 K and 300 K. Initially, the cavity
field is in equilibrium and prepared in a thermal state. The g(2)(t, 0)-function is equal
to 2. After the dynamics starts, a Fock photon is emitted into the cavity mode and the
g(2)(t, 0)-function starts to fluctuate around 2 for 3 K (dotted, black line). The highest and
lowest value of the g(2)(t, 0)-function are far apart, but the mean value stays well within
the bunching regime with

ḡ(2) :=
1

Ta

∫ Ta

0
dt g(2)(t, 0) = 1.1, (3.40)
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3K 300K

Figure 3.15: g(2)(t, 0) of a cavity mode in the thermal state for two temperatures of the LO-
phonon bath. At 3 K (black, dotted line), the photon density and the g(2)(t, 0) fluctuates
strongly. At 300 K (orange, solid line), the fluctuation is decreased and leads to a lower
average value of g(2)(t, 0) from the bunching regime 1.1 at 3 K to 0.8 anti-bunching at
300 K.

for a fixed average time Ta, e.g. Ta = 2 ns. The Fock photon does not change the ini-
tial photon-statistics of the cavity mode for low temperatures. For elevated temperatures
T > 70 K, e.g. 300 K (orange, solid line), the quantum beating leads to a modulated
g(2)(t, 0)-function and surprisingly, only the highest values of the g(2)(t, 0)-function are
decreased drastically. In consequence, the mean value of the g(2)(t, 0)-function drops for
300 K. The initial thermal cavity field is transformed into a non-classical one with a mean
value of ḡ(2) = 0.8, well within the anti-bunching regime. The LO-phonon interaction with
substantial mean phonon number has a strong impact on the quantum correlation of the
cavity field.
To illustrate this result, counting averages for the g(2)(t, 0)-function are plotted in Fig. 3.15
for 3 K and 300 K. It is counted, up to a given time T (2 ns), how many times the g(2)(t, 0)
function enters a given probability interval, e.g. between 0.25 and 0.3. For example, at
3 K, the g(2)(t, 0)-function reaches only two times a value larger than 3, cf. Fig. 3.14, but
never at 300 K. This counting is done from the anti-bunching regime 0 to the bunching
regime of 3 and plotted via bars in Fig. 3.15. The remarkable result is now clearly visible.
The probability to measure a g(2)(t, 0)-value of larger than 1 is drastically decreased at
300 K. It is much more likely to measure a value indicating anti-bunching (g(2) < 1) in
comparison to the 3 K case. Noteworthy, the probability to measure extreme anti-bunching
values (g(2) < 0.2) is also decreased at 300 K. This can be explained by the degradation of
the Fock statistics.
To proof, that the transformation of the thermal light field is not caused by the LO-phonon
impact on the Fock photon, which is spontaneously emitted from the QD, the Fock case
is now investigated. The QD is initially in the excited state and the cavity contains one
Fock photon. In this preparation, the photon probability distribution pn is restricted to
two values, which are non-zero: p1 and p2. Either there is one or two photons in the cavity,
depending on the state of the QD carrier. In Fig. 3.16, the dynamics of the photon density
and the intensity-intensity correlation function g(2)(t, 0) is plotted in case of a cavity mode
prepared in the Fock state with N = 1 and for two temperatures. At 3 K (black, dotted
line), no LO-phonon impact is visible. The photon density oscillates with the Rabi fre-
quency ΩRabi = M

√
2 between 1 and 2. At elevated temperature, e.g. 300 K (orange, solid
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Figure 3.16: Dynamics of the photon density and g(2)(t, 0) of a cavity mode in the Fock
state for two temperatures of the LO-phonon bath. At 3 K (black, dotted line), the photon
density oscillates between 1 and 2 with the Rabi frequency. At 300 K (orange, solid line),
a phonon-induced quantum beating is visible, but the average value of g(2)(t, 0) is only
slightly changed and remains at approximately 0.4.

line), the quantum beating becomes visible and the oscillation amplitude of the photon
density and the g(2)(t, 0) is decreased. If the cavity mode is prepared in a Fock state, the
intensity-intensity correlation g(2)(t, 0)-function reads:

g(2)(t, 0) = 1 − 1
〈〈〈
c†c
〉〉〉 +

〈〈〈
(∆n)2

〉〉〉

〈〈〈
c†c
〉〉〉

2
= 1 − 1

〈〈〈
c†c
〉〉〉 . (3.41)

Thus, for a system purely in the Fock state the standard deviation
〈〈〈
(∆n)2

〉〉〉
=
〈〈〈
c†cc†c

〉〉〉
−

〈〈〈
c†c
〉〉〉

2 is zero and the g(2)(t, 0)-function oscillates between 0.5 for
〈〈〈
c†c
〉〉〉

= 2 or 0 for
〈〈〈
c†c
〉〉〉

= 1 [MW95]. This is shown in Fig. 3.16(right) with a temperature of 3 K, at which
the LO-phonon interaction is negligible (dotted, black line). In contrast to the thermal
light, at 300 K the g(2)(t, 0) function is narrowed around a higher value. Thus, the stan-
dard deviation becomes non-zero due to a phonon-induced Fock state mixing and Eq. (3.41)
is not valid anymore. However, since the phonon occupation (n̄LO = 0.3) is small in com-
parison to the photon number (between 1 and 2), the impact on the average value of g(2)

is small (from 0.35 to 0.39). The Fock state is only minorly transformed into a mixed state
[CRCK10].
Exactly treated, the electron-LO-phonon interaction results into a phonon-induced mixing
of Rabi frequencies and as a consequence into a quantum beating. Since the Fock state is
a maximally squeezed photon number state, the quantum beating just leads to a mixing
of different orders in the light coupling. A partial mixed state is created and it is more
probable to find slightly higher g(2)-values at elevated temperatures (300 K). However, the
photon-statistics itself is not changed. This is illustrated in Fig. 3.17. The counting averages
for the g(2)(t, 0) - function are plotted for 3 K and 300 K in the Fock case. The distribution
is skewed to higher g(2)(t, 0)-function values, but the mean value is only slighty increased.
At 3 K (left), a broad distribution from 0 to 0.45 is visible. It is equally probable to find
a g(2)(t, 0)-function in between this intervall and the mean value ḡ(2) = 0.35 is well in the
single-photon limit. At 300 K (right), it is less probable to measure a g(2)(t, 0)-function
in the extreme single-photon limit g(2) < 0.3, but the mean value remains at approxi-
mately the same value ḡ(2) = 0.39. This explains, why in the thermal case the extreme
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3K 300K

Figure 3.17: Counting averages of g(2)(t, 0) at 3 K and 300 K in case of Fock photons in
the cavity. The distribution of probable g(2)-values is slightly skewed to higher values.

single-photon values of the g(2)(t, 0)-function are also decreased at 300 K. The emitted
Fock photon shifts the distribution slighty to higher values, but within the anti-bunching
regime.
The LO-phonon interaction has only a minor impact on a non-classical photon distribu-
tions, such as a cavity field prepared in a Fock state, but has strong impact on classical
photon distribution. As an example, a thermal cavity field was investigated. The com-
bined, and to arbitrary accuracy evaluated electron-, photon, and phonon dynamics result
in evolution of the thermal light field into a non-classical, anti-bunched distribution. The
counter-intuitive reduction of the g(2)(t, 0)-function from larger than 1 to well below 1 is
enforced by a strongly modified intensity-intensity correlation (

〈
c†c†cc

〉
) due to the LO-

phonon presence and is counter-intuitive because the photon field is made less bunched or
random via interaction with a bath. The antibunching mechanism appears similar to that
producing squeezed states with parametric amplification [SHY+85]. In this case, the local
oscillator is the LO phonon bath Fig. 3.13, where the energetically flat phonon disper-
sion imparts regularity in the beating of the different Rabi oscillations. The significantly
longer phonon wavelength compared to the microcavity length may be the reason for an
incoherent phonon bath to have the same effect as a coherent laser local oscillator: If in a
homodyne detection an incident light is mixed with a phase-matched laser local oscillator
at a beam splitter, photon-antibunching can be observed [TS90]. Hereby, the strength of
the induction model is proven in reproducing the Jaynes-Cummings solution, and being
able to include the LO-phonon interaction in a non-Markovian, non-factorizing approach.
The result occurs at high (TLO = 300K) temperatures, and is therefore interesting for
engineering applications involving nonclassical light. It is also relevant for understanding
photon antibunching experiments, when blackbody radiation from the cavity wall is con-
sidered.
This model offers a wide range of possible extensions, as more electrons, more levels, even
LA-phonons can be taken into account via the mathematical induction scheme and the
numerical evaluation techniques. In the next section, a biexciton cascade is studied, in the
weak coupling and in the strong coupling regime.
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3.5 LO-phonon QD cavity-QED: Biexciton cascade

In this section, the induction model is applied to the biexciton cascade of electrons in a
single QD, strongly coupled to a cavity mode. The dynamics of the biexciton cascades in-
cludes Coulomb-effects, such as energy renormalization and electron-hole exchange splitting
[Tak00; Tak93; NBFZ06], and is particularly important as a possible source for polariza-
tion entangled photons [BSPY00; BUM+04]. Entangled photons constitute an experimen-
tal realization of a qubit [THM00] and are technically feasible for quantum cryptography
[BBG+02], acceleration of quantum information processing [NC00] and even in measure-
ment setups [MSO+10]. Since QDs are promising solid state sources, and can be tailored to
a certain measure in their optical and electroncial properties [KKKG06], it is of great im-
portance to understand the underlying physical processes and quantum correlations within
the semiconductor environment. The induction model provides a theoretical framework to
study the combined photon-, phonon- and carrier interaction with additional semi-classical
electron-light interaction, or, with temperature dependent T1 times due to LO-phonon as-
sisted QD-carrier-WL interaction.
To simulate the biexciton cascade, first the Coulomb interaction, including the electron-
hole exchange splitting, has to be considered [WSS+09]. Via an operator transformation,
done by diagonalization of the Coulomb-Hamiltonian, exciton operators are introduced
and the electron-photon interaction is expressed with these operators, cf. Sec. 3.5.1-3.5.2.
Within the exciton basis, a general set of equations of motion is derived. As an applica-
tion, the equations of motion are evaluated for the weak coupling regime and a temperature
dependent degree of entanglement is calculated, cf. Sec. 3.5.5 and 3.5.6.

3.5.1 Electron-electron interaction

The two electrons in the QD interact with each other via their Coulomb potential, an addi-
tional spin-depended, repulsive exchange interaction V ex is considered [WSS+09; Tak00].
In second quantization and after setting the ground energy to zero (~ωv↑+~ωv↓+V vv = 0),
the Coulomb-part of the Hamiltonian reads:

H|Coulomb = ~ωc↑a
†
c↑ac↑ + ~ωc↓a

†
c↓ac↓ + V vc (a†c↓a

†
v↓av↓ac↓ + a†c↑a

†
v↑av↑ac↑)

+V cc a†c↑a
†
c↓ac↓ac↑ + V ex (a†c↑a

†
v↑av↓ac↓ + a†c↓a

†
v↓av↑ac↑) (3.42)

where ↑, ↓ denote the spin-up, spin-down electron in ground v or excited state c. Here,
the spin state of the electron |J,mj〉 is given by the total angular momentum J and the
spin projection mj in growth direction, i.e. |c ↑〉 = |1/2, 1/2〉 and |c ↓〉 = |1/2,−1/2〉 for
an electron in the excited state. In the ground state, the heavy hole (HH) spin state is
taken into account with |v ↑〉 = |3/2, 3/2〉 and |v ↓〉 = |3/2,−3/2〉. Light hole and split-off
spin states are energetically well below the HH and can be neglected here, cf. Fig. 3.18
[ERK+96; YC05; Sch04]. The Coulomb matrix elements V cc and V vc incorporating the
ground state energy, which is set zero for convenience. Dark state transitions are not
taken into account with ∆mj 6= ±1. V cc is the biexciton shift, when both electrons are
in the excited state. V vc is the monoexciton shift, when only one electron is excited,
whereas the other is in the ground state [RAK+06; DAFK06; CKR09]. From the spin-
orbit coupling originates an electron-hole exchange splitting (V ex), in which repulsive and
attraction forces induced by different spin-conformation give rise to the fine structure
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Figure 3.18: QD band structure with spin states |J,mj〉. Light hole (LH) and split-off (SO)
are energetically separated from the heavy hole state (HH), therefore the ground state spin
can be taken from the HH state.

splitting [WSS+09; Sch04]. Additionally, it is assumed that no spin preferences exist in
semiconductor QD [AKVP05], leading to the given Coulomb Hamiltonian, cf. Eq. (3.42).
Here, only four optically active states determine the system dynamics: |v ↑ v ↓〉, |v ↑ c ↑〉,
|v ↓ c ↓〉, and |c ↑ c ↓〉. The dark states are neglected, such as |v ↓ c ↑〉 and |v ↑ c ↓〉. Four
operators can be introduced for convenience and read in the two-electron basis:

G(†) = a†v↓a
†
v↑av↑av↓, B = a†v↓a

†
v↑ac↑ac↓ (3.43)

P 1
1 = a†v↓a

†
v↑av↑ac↑, P 1

2 = a†v↑a
†
v↓av↓ac↓, (3.44)

where Eq. (3.43) are the ground state G and the biexciton state operator B, whereas in
Eq. (3.44) the polarization operators P 1

1/2 are denoted. Via diagonalization, the Hamilto-
nian is transformed into a basis, in which the Hamiltonian with respect to the Coulomb
contributions is diagonal [CKR09; RAK+06]. New eigenvalues are the result. Commuting
ground and biexciton state operator (Eq. (3.43)) with the Coulomb operator show, they
are already eigenvectors of the Hamiltonian. However, the polarization operators are not
eigenvectors and the diagonalization lead to new exciton operators:

X†
m = vm

1 P 1
1 + vm

2 P 1
2 , (3.45)

with m := H/V replacing 1/2 as polarization operator index. Below, H/V denotes either a
horizontal or a vertical polarization. Here, the polarization is not specified. The coefficients
vm
i are given by:

vH
1 = −vV

2 =
−∆e

√

1 + ∆2
e

, vH
2 = vV

1 =
1

√

1 + ∆2
e

, ∆e =
V ex

~ω↑ − ~ωH
, (3.46)
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with the new eigenvalue ωH/V given by, for simplicity V vc = 0:

ωH/V =
ωc↓ + ωc↑

2
±
√

(ωc↓ − ωc↑)2

4
+ |V ex|2. (3.47)

Within the diagonalized basis, the electron operators (G(†),X
(†)
H ,X

(†)
V , B(†)) are eigenvec-

tors of the electron part of the Hamiltonian with eigenvalues (~ωG = 0, ~ωH , ~ωV , ~ωB).
The transformed Hamiltonian reads:

H|Coulomb = ~ωH X†
HXH + ~ωV X†

V XV + ~ωB B†B , (3.48)

with XH/V and B, the exciton and biexciton annihiliation operator, respectively. The
calculation for more complex Coulomb-Hamiltonians with more contributions, or more
states, and particle is straightforward [RAK+06]. First, new eigenvectors are calculated
and the coefficients are derived. The diagonalized Hamiltonian, e.g. Eq. (3.48), is used to
rewrite any other interaction in the system, such as the electron-photon interaction.

3.5.2 Electron-photon interaction

The electron-photon interaction Hamiltonian of a semiconductor QD is usually expressed in
terms of a dipole coupling between the interband polarization and the creation or annihili-
ation of a photon. cf. Eq. (3.2). The optical and electronic properties of the QD determine
the type of polarization and the wave number of the emitted quantum light. Independent
of the given confinement symmetry, electron-hole exchange interaction leads to a splitting
between dark and bright states and to a mixing of the dark and bright states, forming a
dark and bright doublet. Emission lines, involving only pure states, are circularly polarized,
whereas the mixed states result in emission lines showing linear polarization along the crys-
tal direction [SSR+05; Sch04]. The emission lines with linear polarization are produced by
a superposition of circularly polarized photons. In the rotating-wave approximation, this
interaction reads:

Hel−pt = −~

∑

k

Mk

(

a†v↑ac↑c
†
kσ+

+ a†v↓ac↓c
†
kσ−

)

+ h.a., (3.49)

in which σ+, σ− denotes the polarization and k the wave number of the photon. The
coupling element Mkσ depends on the wave number, as long as it is not specified, or
being transformed into an effective coupling, e.g. in a cavity. Here, a coupling strength
dependence on the photon polarization is neglected [AKVP05; HPS07]. To transform this
electron-photon interaction Hamiltonian into the exciton basis, the dipole interaction is
expressed in the two-electron basis by inserting a unity relation:1↑ = a†v↑av↑ + a†c↑ac↑, 1↓ = a†v↓av↓ + a†c↓ac↓. (3.50)

The interaction Hamiltonian, cf. Eq. (3.49), reads after normal ordering and using the
two-electron assumption, as well as Pauli’s principle [RAK+06; CKR09]:

Hel−pt = −~

∑

k

(

G†P 1
1 + P 1†

2 B
)

Mk c†kσ+
+
(

G†P 1
2 + P 1†

1 B
)

Mk c†kσ−
+ h.a. (3.51)
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The basis transformation allows to express the electron-photon interaction in the new basis,
in which the electron operators are eigenvectors of the electronic part of the Hamiltonian,
cf. Eq. (3.45). This superposition of the exciton operators leads to a superposition of the
photon operators, as well. It is convenient to define new photon operators, e.g.:

c†kH = vH
1 c†kσ+

+ vV
1 c†kσ−

, c†kV = vV
1 c†kσ+

− vH
1 c†kσ−

, (3.52)

which fulfill the commutation relation as well, since the coefficient v
H/V
1/2 are taken from the

basis transformation. The Coulomb Hamiltonian determines the coefficients. If there is no
spin-preference in the system, which would break the symmetry between the four possible
transition in the two-electron case, and the exciton energies are degenerated (~ωc↑ = ~ωc↓),
thus energetically separated only due to the fine structure splitting (V ex), the electron-
photon interaction consists of only two photon operators and reads:

Hel−pt = −~

∑

k

Mk

(

G†XH + X†
HB
)

c†kH + Mk

(

G†XV − X†
V B
)

c†kV + h.a. (3.53)

with the new photon operators

c†kH :=
1√
2

(

c†kσ+
+ c†kσ−

)

, c†kV :=
1√
2

(

c†kσ+
− c†kσ−

)

. (3.54)

Furthermore, it can be assumed that the QD is placed inside a nanocavity, which supports
two different modes, one for the horizontal (ωH

0 ) and one for the vertical polarization (ωV
0 )

of the emitted photons. The energy difference between the vertical polarized and horizontal
polarized mode is in order of magnitude of µeV. Therefore, the coupling strength for both
modes is the same, i.e. MkH

= MkV
= M and the simplified interaction Hamiltonian reads

finally:

Hel−pt = −~M
(

G†XHc†H + X†
HBc†H + G†XV c†V − X†

V Bc†V

)

+ h.a. (3.55)

Hereby, a cavity enhanced biexciton cascade can be studied. In Fig. 3.19, the interaction
scheme restricted to the electron-photon dynamics is depicted and illustrates Eq. (3.55).
Each cavity mode supports one relaxation path via the intermediate exciton state. A cavity
mode enhances only one polarization type [HHH+06]. The energy splitting of the interme-
diate exciton states depends on the excited state energy and on the exchange interaction:

δ = ωH − ωV =
√

|2 V ex|2 = 2|V ex|. (3.56)

If the intermediate exciton splitting is zero, i.e. the exciton energies are the same ωc↑ = ωc↓

and no fine structure splitting in the system leads to an energy shift δ = 0, the four-level
system reduces to a three-level system. In general, the degeneracy of the exciton states is
lifted and four transition energies occur in the system: two between ground and exciton
states, and two between the exciton and biexciton. In this case, the cavity modes can only
be in resonance with one of this four, taken into account the polarization selection, cf.
Fig. 3.19. The biexciton cascade dynamics strongly depend on how close the cavity modes
and the QD transitions are in resonance, and furthermore, the degree of polarization en-
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0

0
0

Figure 3.19: Biexciton cascade scheme. The biexciton |B〉 relaxes via the intermediate
exciton states |XH/V 〉 to the ground state |G〉. Two photons are emitted, depending on
the relaxation path. If the intermediate exciton states are energetically degenerated δ =
ωH−ωV = 0, the relaxation paths are indistinguishable and polarization entangled photons
are produced.

tanglement is determined by the fine structure splitting.

3.5.3 Biexciton cascade: Equations of motion

Now, the system dynamics can be calculated within an equation of motion approach.
Since the number of electrons is fixed, the induction model is applied. There are four elec-
tronic densities: the biexciton

〈〈〈
B†B

〉〉〉
, the intermediate exciton

〈〈〈
X†

HXH

〉〉〉
,
〈〈〈
X†

V XV

〉〉〉
and

the ground state density
〈〈〈
G†G

〉〉〉
, cf. Fig. 3.20. In consequence, there are four transitions:

the ground state to exciton transitions
〈〈〈
G†XH

〉〉〉
,
〈〈〈
G†XV

〉〉〉
and the exciton to biexciton

transitions
〈〈〈
X†

HB
〉〉〉
,
〈〈〈
X†

V B
〉〉〉
. New quantities are formed in this four-level system: a ground

state to biexciton transition
〈〈〈
G†B

〉〉〉
and the density-like quantity exciton to exciton tran-

sition
〈〈〈
X†

HXV

〉〉〉
, crucial for the degree of entanglement. All of these electronic states can

be photon-assisted in higher order by horizontal and vertical polarized photons. Follow-
ing abbreviations are convenient: Hm,n = (c†H)m(cH)n and V p,q = (c†V )p(cV )q. Using the
Heisenberg equation of motion, the general set of equations of motion is derived and proven
via the induction method.
The dynamics of the biexciton density reads:

∂t

〈〈〈
B†BHm,nV p,q

〉〉〉
(3.57)

= i
[
(m − n)ω0

H + (p − q)ω0
V + iκ(m + n + p + q)

]〈〈〈
B†BHm,nV p,q

〉〉〉

− iM
〈〈〈
X†

HBHm+1,nV p,q
〉〉〉

+ iM
〈〈〈
X†

V BHm,nV p+1,q
〉〉〉

+ iM
〈〈〈
B†XHHm,n+1V p,q

〉〉〉
− iM

〈〈〈
B†XV Hm,nV p,q+1

〉〉〉
.

The photon-assisted biexciton density couples to the photon-assisted polarization between
the intermediate exciton and the biexciton state, cf. equations in App. A.3. Phenomeno-
logically, the cavity loss is introduced κ, cf. Sec. 3.1.2. Since the two-electron assumption
holds, the biexciton couples only to energetic lower states, such as the intermediate exci-
ton states via the corresponding transitions. Due to spontaneous emission processes, the
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Figure 3.20: Electronic states in the biexciton dynamics. Besides to the four electronic den-
sities: biexciton

〈〈〈
B†B

〉〉〉
, intermediate exciton

〈〈〈
X†

HXH

〉〉〉
,
〈〈〈
X†

V XV

〉〉〉
and ground state density

〈〈〈
G†G

〉〉〉
, and the four transitions between them, the ground to biexciton state polarization

〈〈〈
G†B

〉〉〉
and the exciton-exciton transition

〈〈〈
X†

HXV

〉〉〉
mix the horizontal |B〉 → |XH〉 → |G〉

and vertical cascade path |B〉 → |XV 〉 → |G〉.

exciton densities are driven stronger by the biexciton transition than by the ground state
transition. The exciton-exciton transition (X†

HXV ) has a significant impact on the exciton
dynamics, if the two intermediate exciton levels are energetically close. The equation of
motion reads:

∂t

〈〈〈
X†

V XHHm,nV p,q
〉〉〉

(3.58)

= i
[
(m − n)ω0

H + (p − q)ω0
V + ωV − ωH + iκ(m + n + p + q)

]〈〈〈
X†

V XHHm,nV p,q
〉〉〉

− iM
〈〈〈
G†XHHm,nV p+1,q

〉〉〉
+ iM p

〈〈〈
B†XHHm,nV p−1,q

〉〉〉
+ iM

〈〈〈
B†XHHm,nV p,q+1

〉〉〉

+ iM
〈〈〈
X†

V GHm,n+1V p,q
〉〉〉

+ iM n
〈〈〈
X†

V BHm,n−1V p,q
〉〉〉

+ iM
〈〈〈
X†

V BHm+1,nV p,q
〉〉〉

This exchange of excitation energy is of great importance for the degree of entanglement,
cf. Sec. 3.5.5. The horizontal polarized photon density can be converted completely into
vertical polarized photons, if the energy splitting between the intermediate exciton levels
is smaller than the cavity loss, i.e. some µeV. The conversion is driven by the ground to
exciton state transitions. The ground state is populated by all relaxation processes as the
energetic lowest electronic state and reads:

∂t

〈〈〈
G†GHm,nV p,q

〉〉〉
(3.59)

= i
[
(m − n)ω0

H + (p − q)ω0
V + iκ(m + n + p + q)

]〈〈〈
G†GHm,nV p,q

〉〉〉

− iM m
〈〈〈
X†

HGHm−1,nV p,q
〉〉〉
− iM

〈〈〈
X†

HGHm,n+1V p,q
〉〉〉
− iM p

〈〈〈
X†

V GHm,nV p−1,q
〉〉〉

− iM
〈〈〈
X†

V GHm,nV p,q+1
〉〉〉

+ iM n
〈〈〈
G†XHHm,n−1V p,q

〉〉〉
+ iM

〈〈〈
G†XHHm+1,nV p,q

〉〉〉

+ iM q
〈〈〈
G†XV Hm,nV p,q−1

〉〉〉
+ iM

〈〈〈
G†XV Hm,nV p+1,q

〉〉〉
.
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Figure 3.21: Biexciton dynamics in the strong coupling for degenerated exciton energies
δ = 0 (a) and for a detuning δ = 10 µeV. (a): The biexciton density (blue line) decays
and the exciton densities (red) build up and are not distinguishable, until both biexciton
and exciton densities are decayed completely and the system enters the ground state state
(green). (b): The exciton energies are distinguishable (red and orange) and are differently
strong driven.

Eq. (3.57) - (3.59) describe the cavity enhanced biexciton cascade and form a complete
set with the equations in App. A.3. More interactions can be considered straightforwardly,
such as classical pumping of the biexciton density, or the LO-phonon interaction. However,
this set of equations of motion contains already interesting features and can be studied in
the strong and weak coupling regime.

3.5.4 Biexciton cascade: Dynamics in the strong coupling regime

To study the biexciton cascade dynamics, initial values have to be chosen, e.g. a popu-
lated biexciton density with

〈〈〈
B†B

〉〉〉
(0) = 1 and no photons in the cavity:

〈〈〈
c†HcH

〉〉〉
(0) =

〈〈〈
c†V cV

〉〉〉
(0) = 0. The coupling strength is set to M = 100 µeV and a high-Q cavity is as-

sumed κ = 20 µeV. Phonon- or Coulomb induced pure dephasing is not included, and the
biexciton, and mono-exciton shift is neglected.
In Fig. 3.21(a) and (b), the dynamics of the electronic densities are plotted without dis-
sipation processes: κ = 0. In the case of complete resonance between the excitonic levels
and the cavity mode (ωH = ωV = ω0

V = ω0
H), the four-level system reduces to a three

level system with a degenerated intermediate exciton level with δ = 0. In Fig. 3.21(a),
the resonant case is plotted. The biexciton density (blue line) decays in dependence of the
assumed electron-photon coupling strength and the exciton densities (red line) are built
up. Both exciton densities are driven equally and are not distinguishable in this plot. With
increasing exciton densities, the ground state density (green line) also builds up due to
spontaneous emission processes. At 20 ps, the ground state reaches its maximum value
and no excitation is in the system, but two photons with horizontal and vertical polar-
ization have been emitted into the cavity mode. Since strong coupling is assumed, the
exciton and biexciton density is driven by the cavity photons and the oscillation starts
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Figure 3.22: Photon density (H1,1, V 1,1) and intensity-intensity correlation (H2,2, V 2,2)
dynamics in the biexciton cascade with a detuning of δ = 10 µeV and a cavity loss of
κ = 10 µeV. Horizontal and vertical driven photon quantities exhibit different oscillation
patterns.

after approximately 40 ps again. In Fig. 3.21(b), a detuning between the exciton levels of
10 µeV is assumed. The same initial values are valid. Due to the detuning in the system,
between cavity mode and exciton densities, the dynamics of the exciton densities differ
(red and orange line). The Rabi oscillation of the biexciton and ground state is irregular.
The amplitude is modulated. Eventually, the value of

〈〈〈
B†B

〉〉〉
= 1 is reached, but after a

longer time (not shown).
Experimentally accessible are the transmitted photon densities and intensity-intensity cor-
relation from the cavity mode. The photon density appears in the set of equations Eq. (3.57)
- (3.59) not independently, only in correlation with transitions and electron densities. This
is a typical feature of a strongly coupled system, since factorization cannot be applied
and the full system dynamics depends on the correlation between the electron and photon
system. However, separate equations of motion of the pure photon dynamics are easily de-
rived, using the same induction method. The photon densities for the number of horizontal
and vertical polarized photons read:

∂t

〈〈〈
Hm,m

〉〉〉
(3.60)

= −2mκ
〈〈〈
Hm,m

〉〉〉
− 2mIm

[

M
〈〈〈
G†XHHm,m−1V 0,0

〉〉〉
+ M

〈〈〈
X†

HBHm,m−1V 0,0
〉〉〉]

,

∂t

〈〈〈
V p,p

〉〉〉
(3.61)

= −2pκ
〈〈〈
Hp,p

〉〉〉
− 2pIm

[

M
〈〈〈
G†XV H0,0V p,p−1

〉〉〉
− M

〈〈〈
X†

V BH0,0V p,p−1
〉〉〉]

.

For m = p = 1, these equations determine the photon density dynamics for horizontal
or vertical polarized photons, whereas for m = p = 2, the intensity-intensity correlation
is computed. In Fig. 3.22, the dynamics of the photon correlations is plotted. The initial
values are chosen as in Fig. 3.21(b) with a fine structure splitting of 10 µeV. Horizontal
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Figure 3.23: Polarization coherence dynamics (H2,0V 0,2) in the biexciton cascade. This
quantity determines the degree of entanglement. The higher the oscillation frequency, the
smaller the degree of entanglement.

and vertical cavity mode are in resonance with the ground to exciton state transition, re-
spectively: ωH = ω0

H 6= ωV = ω0
V . Initially, no photon is in the cavity and the biexciton

is populated. The photon densities
〈〈〈
H1,1

〉〉〉
(blue, dotted line) and V 1,1 (orange, solid line)

start at zero and increase equally fast to 1, indicating that via the biexciton cascade one
photon with horizontal and vertical polarization is generated, cf. Fig. 3.22(upper panel).
Due to the small cavity loss, Rabi oscillations occur. The detuning between the inter-
mediate exciton levels leads to a deviation between the oscillation behavior. The photon
density in the vertical polarized mode differs from 30 ps strongly from the oscillation of
the horizontal mode. The exciton-exciton transition

〈〈〈
X†

V XH

〉〉〉
enforces a mixing of the ex-

citation energy between the two cavity modes, indicated with photon densities above 1.
After 150 ps, the cavity loss dominates the dynamics and the oscillations become similar
again. In the lower panel of Fig. 3.22, the intensity-intensity correlation for the horizon-
tal mode

〈〈〈
H2,2

〉〉〉
(blue, dotted line) and the vertical mode

〈〈〈
V 2,2

〉〉〉
(orange, solid line) is

plotted. The intensity-intensity correlation determines the g(2)(t, 0)-function of the cavity
mode, i.e. the photon-statitics. Again, the fine structure splitting leads to strong deviations
between the horizontal and vertical mode in an irregular pattern. Since the biexciton is
initially populated, it is highy unprobable that two horizontal or vertical polarized pho-
tons are generated. Therefore, the intensity-intensity correlation stays below 1 and marks
a g(2)(t, 0)-function in the anti-bunching regime.
In terms of polarization entanglement, a coherence between the horizontal and vertical
polarized photons, is of great importance. The equation of motion reads:

∂t

〈〈〈
Hm,0V 0,m

〉〉〉
(3.62)

= i m
[
(ω0

H − ω0
V ) + 2iκ

] 〈〈〈
Hm,0V 0,m

〉〉〉
− i m M

〈〈〈
X†

HGHm−1,0V 0,m
〉〉〉

+ imM
(〈〈〈

G†XV Hm,0V 0,m−1
〉〉〉

+
〈〈〈
B†XHHm−1,0V 0,m

〉〉〉
−
〈〈〈
X†

V BHm,0V 0,m−1
〉〉〉)

This polarization coherence oscillates with the assumed detuning between the cavity modes,
which are resonant with the ground to exciton transition of the QD system. In Fig. 3.23,
the dynamics of the real (left) and imaginary part (right) of this polarization coherence
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1

2

Figure 3.24: Hanbury Brown and Twiss setup. Intensity-intensity correlation in dependence
on polarizers are measured. The beam splitter is non-polarizing. After correlation, the
quantum state tomography elements are experimentally reconstructed, and the degree of
entanglement is determined.

is plotted. The oscillation depends on the number of photons, on the coupling strength
between electrons and photons and, in particular, on the detuning between the horizontal
and vertical mode. Note, the oscillation is around zero and thus, cancels time-integrated
out. Here, the mean value of the real part is less than 0.002 and for the imaginary part
0.0002. But the mean value determines the degree of entanglement.

3.5.5 Biexciton cascade and entanglement

Among different proposals [EOSI04; FAT+04], very promising solid-state sources for po-
larization entangled photon pairs are semiconductor QDs, since a single energy level in
a QD is saturated by two electrons (or holes) with opposite spins due to the exclusion
principle [BSPY00]. Entanglement in its simplest form is a non-separable superposition
of joint quantum states, that show non-local quantum correlations [Bel64]. The degree of
entanglement can be expressed with several quantities, such as the fidelity [Jos94], the
von-Neumann entropy [BDSW96] or the concurrence [Woo98]. Here, the concurrence is
taken as a measure for the degree of entanglement, which is experimentally accessible via
the quantum-state tomography [JKMW01; KK10]. In a Hanbury Brown and Twiss setup
[HT56], intensity-intensity correlations

〈〈〈
Hm,mV p,p

〉〉〉
are measured, for m + p = 2. Here,

an experimental setup is considered, cf. Fig. 3.24, where the distance within the two light
paths to the detector is appropriately adjusted to compensate the time difference between
the two photon emission processes in the biexciton-cascade [SYA+06]. This enhances the
probability to detect the two photons at the same time. In the quantum-state tomography
[JKMW01], time-integrated measurements are done:

ρHH :=
1

T

∫ T

0
dt
〈〈〈
H2,2

〉〉〉
(t) , ρVV :=

1

T

∫ T

0
dt
〈〈〈
V 2,2

〉〉〉
(t) (3.63)

ρHV = (ρVH)∗ :=
1

T

∫ T

0
dt
〈〈〈
H2,0V 0,2

〉〉〉
(t), (3.64)
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where T is chosen large enough to consider all possible arrival times, e.g. 1 − 2 ns. The
time-integrated intensity-intensity correlations (ρV V , ρHH , ρHV ) determine the degree of
the entanglement of the emitted photon pair. Neglecting other detuning sources but the
fine structure splitting (δ ≥ 0), the biexciton decays via two relaxation paths: either
〈〈〈
B†B

〉〉〉
→
〈〈〈
X†

HXH

〉〉〉
→
〈〈〈
G†G

〉〉〉
and

〈〈〈
H2,2

〉〉〉
> 0 or

〈〈〈
B†B

〉〉〉
→
〈〈〈
X†

V XV

〉〉〉
→
〈〈〈
G†G

〉〉〉
and

〈〈〈
V 2,2

〉〉〉
> 0. If the fine structure splitting is small (δ ≤ 10 µeV), the two relaxation

path are not distinguishable due to the exciton-exciton transition:
〈〈〈
B†B

〉〉〉
→
〈〈〈
X†

HXH

〉〉〉
→

〈〈〈
X†

V XH

〉〉〉
→
〈〈〈
X†

V XV

〉〉〉
→
〈〈〈
G†G

〉〉〉
and

〈〈〈
H2,0V 0,2

〉〉〉
> 0. As a consequence, only four combi-

nation of the intensity-intensity correlation are non-zero and the photon density matrix in
the polarization sub-space (|HH〉,|HV 〉,|V H〉 and |V V 〉) reads:

ρpt :=







ρHH 0 0 ρHV

0 0 0 0
0 0 0 0

ρV H 0 0 ρV V







. (3.65)

Now, the concurrence is defined via the eigenvalues λi (i=1,2,3,4) of the polarization sub-
space density matrix with:

C(ρpt) := max {λ1 − λ2 − λ3 − λ4, 0} , (3.66)

where the order of the eigenvalue is defined as: λ1 ≥ λ2 ≥ λ3 ≥ λ4 [SH06]. As a consequence,
the concurrence has a positive value and is smaller than 1 due to the normalized character
of the density matrix with Tr

[
ρpt
]

= 1. Here with Eq. (3.65), the concurrence can directly
be calculated and expressed in dependence on the polarization coherence ρHV and reads:

C = 2|ρHV |. (3.67)

For a degenerated intermediate exciton level, the horizontal and vertical decay path are
not distinguishable. Therefore, the intensity-intensity correlation reads: ρHH = ρV V = 0.5.
The polarization coherence reaches its maximum value with ρV H = 0.5 and the concur-
rence shows complete entanglement: C = 1.
Via Eq. (3.60) - (3.62), the intensity-intensity correlations are calculated for different pa-
rameter sets. In the strong and weak coupling regime, the degree of entanglement can be
discussed. In case of strong coupling, the induction method needs to be applied. An impor-
tant feature, the loss of entanglement in case of a strong fine structure splitting δ ≈ 10 µeV,
is computable also in the weak coupling regime. This is done in the next section, as the
set of equations of motion reduces considerably.

3.5.6 Biexciton cascade: Weak coupling regime

In the weak coupling regime, the losses overrule the electron-photon coupling element:
M ≪ κ. As a consequence, the photons leave the system faster than a possible reabsorp-
tion from the electronic system may occur. Rabi oscillations are prevented and induced
absorption and emission processes are negligible. The spontaneous emission dominates the
system dynamics. The equations of motion are truncated to the pure cascade scheme, e.g.
quantities like

〈〈〈
B†BHm,nV p,q

〉〉〉
for m,n, p, q 6= 0 or

〈〈〈
G†GHm,nV p,q

〉〉〉
and

〈〈〈
a†vavHm,nV p,q

〉〉〉
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Figure 3.25: Set of equation of motion in the weak coupling regime. No induced absorption
or emission processes occur. The dark blue quantities represent densities, which do not con-
tribute to the entanglement, whereas the dark orange and red quantities directly generate
a crossing of the different paths in the light orange boxes and are crucial to entanglement.

for m,n, p, q > 1 vanish. E.g., the biexciton density cannot be photon-assisted and the
equation of motion reads:

∂t

〈〈〈
B†B

〉〉〉
= −2Γ

〈〈〈
B†B

〉〉〉
+ 2Im

[

M
〈〈〈
X†

HBH1,0
〉〉〉
− M

〈〈〈
X†

V BV 1,0
〉〉〉]

, (3.68)

a radiative decay Γ = Γrad = 25 ps−1 into non-cavity modes is assumed and corresponds
to a T1-time, incorporated in the Weisskopf-Wigner theory [SZ97; CKR09; NBFZ06]. The
cavity modes are in resonance with the ground-exciton transition: ω0

H = ωH and ω0
V = ωV

with the photon life time of κ = 10 µeV. The other equations of motion, truncated to the
weak coupling regime, are listed in the appendix, cf. App. A.4.
In Fig. 3.25, the involving quantities in the cascade scheme are depicted. The color of the
boxes indicate the importance of the quantity in generating a polarization entangled photon
pair. The dark blue quantities represent densities, which do not contribute to the entangle-
ment, whereas the dark orange and red quantities directly generate a crossing of the dif-
ferent paths in the light orange boxes and are crucial to entanglement. The dynamics start
with a populated biexciton

〈〈〈
B†B

〉〉〉
, which decays via the photon-assisted exciton-biexciton

polarization. The emitted photon has either a horizontal or vertical polarization. Therefore,
two decay paths are possible via the photon-density assisted intermediate exciton densities
〈〈〈
X†

V XV H0,0V 1,1
〉〉〉

and
〈〈〈
X†

HXHH1,1V 0,0
〉〉〉
. However, the photon-assisted exciton-biexciton

polarization couples additionally to the photon-assisted ground-biexciton state polariza-
tion

〈〈〈
G†BH2,0V 0,0

〉〉〉
or
〈〈〈
G†BH0,0V 2,0

〉〉〉
. This characteristic quantity in a four-level system

leads to a decay path mixing. This can be seen in Fig. 3.25. The ground-biexciton transi-
tion couples to ground-exciton transitions, assisted from horizontal and vertical polarized
photons, such as

〈〈〈
G†XV H2,0V 0,1

〉〉〉
or
〈〈〈
G†XHH0,1V 2,0

〉〉〉
. In fact, these polarization-mixed

ground-exciton transitions drive the polarization coherence ρHV , which determines the de-
gree of entanglement in Eq. (3.67).
Furthermore, the intermediate exciton states also couples to the exciton-exciton transi-
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Figure 3.26: Biexciton cascade dynamics in the weak coupling regime. Left: The biexciton
decays (solid line). The intermediate exciton density builds up (dashed line) and decays,
while the intensity-intensity correlation is built up (dashed, dotted line). The biexciton
cascade is completed. Right: The dynamics of the off polarization coherence for different
fine structure splitting Vex.

tion via an exchange of a photon with respective polarization
〈〈〈
X†

V XHH0,1V 1,0
〉〉〉
. This

exciton-exciton transitions drives also the polarization-mixed ground-exciton transitions.
The smaller the detuning between the exciton states, the less the exciton-exciton transition
oscillates and the stronger the polarization coherence is driven. But if the detuning is large
δ ≥ 10 mueV, the decay path do not overlap and the biexciton decay is dominated by
the emission of either two horizontal or vertical polarized photons without a polarization-
mixed coherence, e.g.

〈〈〈
B†B

〉〉〉
→
〈〈〈
X†

HXHH1,1V 0,0
〉〉〉
→ ρHH . In this case, the entanglement

does not exist and the decay path can be reconstructed afterwards by the quantum state
tomography results.
In Fig. 3.26, the biexciton cascade dynamics in the weak coupling regime is depicted. On
the left, the biexciton decays (solid line), the intermediate exciton density builds up (dashed
line), and the first photon is emitted. After 50 ps, the biexciton density is completely re-
laxed into the exciton density and due to the losses in the system, the exciton density starts
to relax to the ground state via the emission of a second photon. The intensity-intensity
correlation increases and reaches its maximum, when the exiton density is zero. The cavity
loss leads to a decay of the intensity-intensity correlation and after around 500 ps, the
system dynamics stops. Two photons are emitted, either horizontal or vertical polarized
or entangled. In Fig. 3.26(right), the dynamics of the polarization coherence is plotted
for different detunings δ between the intermediate exciton levels. If the detuning is small
δ = 1 µeV (dashed line), the polarization coherence is density-like and the oscillation fre-
quency is small. But for higher detuning values, e.g. Vex = 10 µeV, the oscillation frequency
is high and the difference to the intensity-intensity correlations ρHH and ρV V is big. The
oscillation frequency is determined by the detuning, cf. Eq. (3.62), of the horizontal and
vertical cavity mode.
Quantum-state tomography reconstructs the polarization density matrix via averaged mea-
surements, cf. Eq. (3.64). In Fig. 3.27(left), the time-integrated intensity-intensity corre-
lation ρHH and polarization coherence ρHV over the time is plotted. This illustrates the
importance of the detuning and the oscillation frequency of the polarization coherence.
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Figure 3.27: Left: Time-integrated intensity-intensity correlations. Right: The concurrence
in dependence of the fine structure splitting Vex = δ

2 .

The intensity-intensity correlation is a higher order density and does not oscillate. Time-
integrated saturates ρHH (blue) at the value 0.5. The values in the quantum-state to-
mography are normalized, that the trace of ρpt equals 1. In the biexciton cascade, ρV V

and ρHH reaches time-integrated and normalized always 0.5. In contrast to the intensity-
intensity correlation (orange and red line), the polarization coherence ρHV oscillates with
2δ = 4|Vex|. If the oscillation frequency is high, compared to the duration of the biexciton
cascade, time-integration leads to a vanishing value for ρHV . For a Vex = 1 µeV (orange
line), the time-integrated value of ρHV is still close to the value of ρHH . However, the
oscillation frequency is around 5 ns−1 and the value is lowered after 0.4 ns due to the
oscillation. More pronounced for a Vex = 10 µeV (red line), the oscillation takes place on
a time scale of ps and consequently the time-averaged value increases and decreases fast
and remains at a low value of around 0.01. In Fig. 3.27(right), the degree of entanglement
in dependence of the fine structure splitting is depicted. The cavity mode and the ground-
exciton transitions are kept in resonance. If Vex 6= 0, the cavity modes are detuned from
each other: ω0

H = ωH 6= ω0
V = ωV . Consequently, the maximum entanglement is generated

for a vanishing fine structure splitting. Any detuning leads to a loss of entanglement. For
Vex ≥ 20 µeV, the entanglement vanishes completely [CMD+10].
The fine structure splitting of the intermediate exciton states imposes a severe restriction
to the generation of polarization entangled photon pairs [STS+02; SFP+02; USM+03]. An-
other restriction comes into play, if the QD carriers interact with the surrounding semicon-
ductor host material, e.g. with the carriers in the wetting layer or with the bulk phonons.
However, in a pure relaxation process, such as a biexciton cascade, the pure dephasing
contributions may be neglegible [HPS07]. Therefore the immediate attack of occurring
transitions by longitudinal acoustical and optical phonons have no impact on the degree of
entanglemenent, at least in the weak coupling regime. In Fig. 3.28, experimental data from
Hafenkramp et.al [HUM+07] is presented to illustrate the minor impact of pure dephasing
processes on the degree of entanglement. Pure dephasing increases considerably from 4 K
to 30 K [KAK02], but the concurrence is only minorly decreased. Further temperature
increment leads to a vanishing signal. Hafenkramp et al. contributes this temperature ef-
fect to a loss of carriers to the wetting layer. Next, this effect is taken into account via
an LO-phonon coupling between WL and QD carrier states and is in agreement with the
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Figure 3.28: Experimental data from the Group of Peter Michler [HUM+07]. The con-
currence is measured in a quantum tomography setup for 4 K and 30 K. The degree of
entanglement is weakly decreased for 30 K from 0.55 to 0.41, since pure dephasing processes
have no impact on the entanglement and WL carrier losses are negligible at temperatures
well below 70 K.

presented data in Fig. 3.28. The impact of the WL - QD carrier interaction depends on
the geometry, size and energy configuration of the QD. If the QD energy levels are far
separated from the WL energy level, the QD is atom-like and the two-electron assumption
holds [Sti01]. Yet, it may be feasible to pump the QD electrically with the ultimate goal
to fabricate an entangled photon source on demand in a LED structure [SSF+10]. In this
case, the WL-QD interaction cannot be neglected.
Depending on the QD size, the heavy hole state (HH) is typically separated between one
and two LO phonon energies from the WL band edge, cf. Fig. 3.29(left). To connect the
QD holes with the WL effectively, at least two LO-phonon processes have to be taken into
account. Single phonon processes cannot contribute to the relaxation process. WL elec-
trons are at least three LO-phonon energy separated from the QD electron state. Within
the weak density regime, Coulomb interaction within the WL is negligible [DMR+10]. The
microscopic relaxation rates Γw are derived in an effective Hamiltonian approach, based on
a higher-order Markovian process. The whole two LO-phonon process is energy conserving:
ǫWL
vkres

− ǫQD
v = 2~ωLO, cf. Fig. 3.29(left). However, in the transition to the intermediate

carrier state at ǫWL
vk , the energy conservation is always violated, since the hole state at

k is always less than one LO-phonon energy separated from ǫWL
vkres

. Processes, which are
energy conserving, but consists of energy conservation violating subprocesses, are called
higher-order Markovian process [DMR+10]. The probability amplitude of the subprocesses
depend strongly on what extent the energy conservation is met.
The LO-phonon assisted relaxation rates contribute to the overall T1-time in the system,
which now reads Γ = Γr + Γw and consists of the LO-phonon induced relaxation rate
Γw and the radiative decay Γr. In contrast to Γr, the LO-phonon relaxation rates depend
strongly on the temperature via the Bose-Einstein distribution function. For a two LO-
phonon process, the temperature dependence corresponds to the temperature dependence
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Figure 3.29: Left: LO-phonon assisted carrier relaxation in a higher-order Markovian pro-
cess. Right: T1-time in dependence on the temperature. With increasing temperature, the
LO-phonon assisted scattering rate increases due to the increasing number of phonons.
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Figure 3.30: With increasing temperature, the LO-phonon assisted scattering rate increases
due to the increasing number of phonons and the degree of entanglement is decreased.
Until for temperatures beyond T = 110 K, the entanglement is entirely lost due to the WL
induced damping, even for the ideal situation of degenerated exciton levels.

of a Bose-Einstein distribution function to the power of two. In Fig. 3.29(right), the relax-
ation rate over the temperature is plotted. From a temperature of T = 70 K and higher, the
relaxation rate exceeds the radiative decay rate Γr = 40 ns−1 and becomes the dominant
damping and dephasing process in the system [CMD+10].
The temperature dependent T1-times of the LO-phonon assisted WL carrier QD carrier
scattering allow a temperature dependent analysis of the quality of entanglement of the
biexciton cascade in a semiconductor QD, embedded in GaAs bulk material. In Fig. 3.30,
the degree of entanglement (concurrence) is plotted for different exchange splitting strength
and for different temperatures, concerning the LO-phonon damping rates. First, it is shown
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how the entanglement is lost with increasing Vex. The FWHM of the concurrence depends
on the chosen Coulomb parameters. When temperature effects of the WL states are taken
into account, the concurrence is spoiled even in the ideal situation of degenerated interme-
diate exciton levels with Vex = 0. For low temperatures T < 70 K, the concurrence remains
unaffected by the WL-induced dephasing rate Γw, since the scattering times are well above
1 ns, thus on a larger time scale than the whole biexciton dynamics. With increasing tem-
perature, the LO-phonon damping becomes the dominant process in the biexciton cascade.
Until for temperatures beyond T = 110 K, the entanglement is entirely lost due to the
WL induced damping, even for the ideal situation of degenerated exciton levels. Since in a
pure relaxation case, i.e. a biexciton cascade in the weak coupling regime, the pure dephas-
ing of longitudinal acoustical phonons is negligible, phonons imposes only via LO-phonon
assisted scattering processes a restriction to the generation of polarization entangled pho-
ton pairs, in particular in electrically driven LED structures [SSF+10]. Depending on the
host material of the QD, WL induced damping rates reduces the degree of entanglement,
e.g. in GaAs at a temperature of T = 100 K in the weak coupling regime. Further in-
vestigations, in particular via the induction method in the strong coupling regime, with
inherent LO-phonon coupling to the QD exciton may reveal other probabilities. E.g. the
LO-phonon sidebands may enforces an erasing of the which-path information, similiar to
the modulation of the exciton and biexciton energies via external applied electrical fields
[CG09].
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4 Quantum dot - wetting layer cavity quantum

electrodynamics

The fundamental model to study quantum optical properties of a two-level system interact-
ing with a single-cavity mode is the Jaynes-Cummings model (JCM), cf. Sec. 2.2. The JCM
provides an analytical solution under three conditions: (i) the one-electron assumption, i.e.
expectation values such as 〈a†1a

†
2a3a4〉 are zero; (ii) only the electron-photon interaction

is considered and (iii) a closed system is assumed without pumping mechanisms or losses.
To place this theory into an experimental context, one may consider a stream of velocity-
selected excited Rydberg atoms pass through a microwave cavity at a rate that allows only
one atom to be in the cavity at any time [SK93]. Recent progress in nanotechnology pro-
vides a new fundamental scheme to study quantum optical phenomena, a semiconductor
QD in a microcavity [STH+09; FMR+09].
In Chap. 3, a mathematical induction method is introduced to include the LO-phonon
interaction, cavity loss and radiative decay and electrical pumping into the strongly cou-
pled electron-photon interaction. However, a fixed number of electrons is the fundamental
assumption for the induction model and two conditions for the JCM are not met: (ii)
and (iii). Considering a QD in a carrier reservoir - wetting layer (WL) system, all three
conditions of the JCM are not fulfilled, cf. Fig. 4.1. The model system to illustrate the pro-
posed photon probability cluster expansion (PPCE) is described by the electron-photon
Hamiltonian H = H0 + Hel−pt [MW95] and illustrated in Fig. 4.1(b):

H = ~ω0c
†c + ~ωca

†
cac + ~ωva

†
vav − ~M(a†vacc

† + a†cavc). (4.1)

Figure 4.1: Scheme of the model system: a) a quantum dot is embedded inside a wetting
layer leading to confined QD states coupled to a wetting layer continuum, b) the emission
of the confined states couples to a photon mode in a cavity.
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For simplicity, only one valence band state v and conduction band state c is considered
with the energies ~ωv and ~ωc, respectively. Here, the cavity mode is assumed to be in reso-
nance with the QD band gap frequency: ω0 = ωc−ωv. The off-diagonal coupling matrix M
denotes the electron-photon interaction strength. Additionally, the two level quantum dot
is assumed to be embedded in an electronically occupied carrier reservoir - wetting layer.
In particular, the one electron assumption is not valid and for the emission of non-classical
light, many-particle correlations for the dynamics of electrons and holes confined in the
QDs become important. In particular, electrical pump mechanisms are in focus of research
and feasible for future technological applications, such as optical quantum-information pro-
cessing or quantum cryptography [YKS+02; LO05].
For describing the quantum dynamics of semiconductor light emitters involving weak light-
matter coupling and large photon numbers, an expansion involving mean field quantities
and their fluctuations (often called cluster or correlation expansion) provides a well con-
trolled theoretical scheme to treat many particle systems of electrons, phonons and pho-
tons [Fri96; AFK05; KK06; GWLJ07]. However, for semiconductor emitters operated in
the limit of few photons [MIM+00] and few electronic levels, such as quantum dot-wetting
layer (QD-WL) systems [GWLJ07], the cluster expansion breaks down, since it is based
on the assumption that fluctuations of mean field quantities have minor influence, cf.
Sec. 2.3. With the rise of quantum information and the search for proper solid state emit-
ters, QD-WL systems for single and entangled photons are in the focus of current research
[YKS+02; GWLJ07; CKR09].
In contrast to Chap. 3, it is now important to treat the strongly coupled electron-photon in-
teraction within a many-particle perturbation approach, regarding the carrier fluctuations
in a QD-WL system, in which a fixed number of electrons cannot be assumed. Therefore,
there is an urgent need for the extension of the standard cluster expansion (SCE). Such an
extension: the photon probability cluster expansion (PPCE) is developed in this chapter.
The PPCE is a reliable approach for few photon dynamics in many body electron systems.
The strength of this method is to keep the accurate results of the SCE for large photon
numbers [KK06; GWLJ07], and, additionally, to include the strong coupling limit for high
quality cavities [RSL+04].
This chapter is organized as following: first, the standard cluster expansion is illustrated
and the Hartree-Fock factorization introduced, cf. Sec. 4.1. The intensity-intensity corre-
lation g(2)(t, 0)-function is computed within the SCE for a small number of photons and
emitters, cf. Sec. 4.1.1, and problems are discussed. In Sec. 4.2, the PPCE is derived and
PPCE and SCE solutions are compared in the single-photon limit. Within the PPCE, the
environment coupling of the QD to non-lasing modes, cavity losses, pure dephasing and
electrical pumping are discussed in Sec. 4.4. Finally, parameter studies of a single-QD laser
in the single-photon and lasing regime are presented, cf. Sec. 4.5.

4.1 Standard cluster expansion (SCE) beyond the
one-electron assumption (OEA)

A significant difference between semiconductor and atom physics is the number of carriers,
which are involved in the system dynamics [Mah90]. In atom physics, the number of car-
riers is fixed and in most cases, only the lowest unoccupied molecule orbital (LUMO) and
the highest occupied molecule orbital (HOMO) need to be considered, populated with one
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electron either in the excited or in the ground state. The one-electron assumption (OEA) is
assumed to be valid in most of the discussed cases [Car99; SZ97]. If not the OEA, at least
the ground state density is correlated to the excited state density. However, in semicon-
ductors, the number of carriers, electrons and holes, is high and even for confined system,
e.g. QDs, the OEA cannot be regarded as always valid. For shallow QD, which are ener-
getically not far separated from the carrier reservoir of the semiconductor, the OEA is not
a good approximation [BGWJ06]. More important, the number of carriers in the excited
and in the ground state are not correlated, since electrons and holes have different effective
masses and in case of InAs/GaAs QDs holes are energetically closer to the WL than their
electrons and pumping rates differ [Sti01].
In systems without a fixed number of electrons, i.e. expectation values like

〈〈〈
a†1a

†
2a3a4

〉〉〉

are not vanishing, a hierarchy problem occurs. Quantities with two electronic operators
〈〈〈
a†1a4

〉〉〉
couple to expectation values with four operators

〈〈〈
a†1a

†
2a3a4

〉〉〉
, those to six operator

expectation values
〈〈〈
a†1a

†
2a

†
5a6a3a4

〉〉〉
etc [DWRK10; SCK04]. To cast the set of equations

into a closed and solvable system of differential equations, the expectation values need to
be factorized to eliminate the coupling to higher orders in the electronic system. The lowest
order of factorization is a mean-field theory, which describes the many-particle dynamics
within a single-particle interaction [Fri96].
In this section, the conventional Hartree-Fock approximation is applied to the QD cavity-
QED case. The inclusion of many-particle contributions to the electron-photon dynamics
leads to a modified spontaneous emission source term. However, the Hartree-Fock contri-
butions do not solve the underlying problem of the SCE, regarding the factorization of a
strongly correlated system, such as the QD cavity-QED case, cf. Sec. 2.3. However, exper-
imental results can be explained and the calculations are valid for many emitter dynamics
within the cavity, or for a high number of photons.

4.1.1 Hartree-Fock approximation within the SCE

Considering a shallow QD, with many particle contribution, the equation of motion of the
polarization changes. Beyond the OEA, the microscopic photon-assisted polarization reads:

∂t

〈〈〈
a†vacc

†
〉〉〉

c = −iM
(〈〈〈

a†cac

〉〉〉
−
〈〈〈
a†ca

†
vavac

〉〉〉)

− iM
〈〈〈
c†c

〉〉〉{〈〈〈
a†cac

〉〉〉
−
〈〈〈
a†vav

〉〉〉}

−iM
{〈〈〈

a†cacc
†c
〉〉〉

c −
〈〈〈
a†vavc

†c
〉〉〉

c
}

. (4.2)

Compared with Eq. (2.13), a significant difference is introduced in to the dynamics of the
photon-assisted polarization. The spontaneous emission source term is driven now via two
expectation values:

〈〈〈
a†cac

〉〉〉
and

〈〈〈
a†ca

†
vavac

〉〉〉
. The second term vanishes in the OEA, since

the electron cannot be in both states at the same time. Due to the presence of the WL,
the OEA loses the validity and quantities with four electronic operators have to be taken
into account, even without including a wetting layer - quantum dot carrier interaction in
the Hamiltonian explicitely.
To close the set of differential equations, one needs to factorize the expectation values at a
given level, e.g. on a Hartree-Fock level:

〈〈〈
a†ia

†
jakal

〉〉〉
≈
〈〈〈
a†ial

〉〉〉〈〈〈
a†jak

〉〉〉
−
〈〈〈
a†iak

〉〉〉〈〈〈
a†jal

〉〉〉
. This

factorization rule is derived via the approximation, that the electron-electron correlations
can be expressed as a general canonical statistical operator (GCSO), including only single
particle contributions [Fri96; FS90]. That is: the single particle dynamics is described in a
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mean field, induced by the other particles. The approximation is done in the choice of the
GCSO,[FS90] in which the observables of interest are included, e.g. ρHF:

〈〈〈
a†ia

†
jakal

〉〉〉
= tr(a†ia

†
jakal ρ) ≈ tr(a†ia

†
jakal ρHF ). (4.3)

After introducing a unitary matrix φ to conveniently express the single particle contribution

GCSO with new operators [see App. A.5 for details]:

ρHF =
1

Z
e−

P

n λD
nn d†ndn , d(†)

n =
∑

i

φ
(∗)
in a

(†)
i , (4.4)

inheriting the fermionic character. The partition function is calculated with the complete
set of eigenfunctions of the new operators and reads:

Z = (1 + e−λD
11)(1 + e−λD

22) · · · (1 + e−λD
NN ) = Πk(1 + e−λD

kk). (4.5)

Now, the GCSO is explicitly given and one can calculate on a Hartree-Fock level the
expectation value of the electron-electron correlations:

〈〈〈
a†ia

†
jakal

〉〉〉
≈
∑

abcd

φaiφbjφ
∗
kcφ

∗
ldtr(ρHF d†ad

†
bdcdd). (4.6)

Only two contributions remain, if the trace is evaluated, since the states are orthogonal.
The expectation value of the four electron operator quantity yields:

〈〈〈
a†ia

†
jakal

〉〉〉
≈

∑

cd

[

φdie
−λD

ccφ∗
ld

(1 + e−λD
cc)

] [

φcje
−λD

ddφ∗
kc

(1 + e−λD
dd)

]

−
[

φdje
−λD

ccφ∗
ld

(1 + e−λD
cc)

][

φcie
−λD

ddφ∗
kc

(1 + e−λD
dd)

]

=
〈〈〈
a†ial

〉〉〉〈〈〈
a†jak

〉〉〉
−
〈〈〈
a†iak

〉〉〉〈〈〈
a†jal

〉〉〉
. (4.7)

The calculation is straightforward, after choosing the Hartree-Fock GCSO [FS90].

4.1.2 Modified equations of motion within the SCE

Now, the equation of the photon-assisted polarization is closed on the electronic single-
particle level:

∂t

〈〈〈
a†vacc

†
〉〉〉

= −iM
〈〈〈
a†cac

〉〉〉 (

1 −
〈〈〈
a†vav

〉〉〉)

− iM
〈〈〈
c†c

〉〉〉 [〈〈〈
a†cac

〉〉〉
−
〈〈〈
a†vav

〉〉〉]

−iM
[〈〈〈

a†cacc
†c
〉〉〉

c −
〈〈〈
a†vavc

†c
〉〉〉

c
]

. (4.8)

The source term of spontaneous emission is changed from being proportional to the excited

state density only
〈〈〈
a†cac

〉〉〉
, to the product of ground and excited state

〈〈〈
a†cac

〉〉〉 (

1 −
〈〈〈
a†vav

〉〉〉)

as a result of the interaction between WL carriers and the carriers inside the QD [BGWJ06;
GWLJ07]. To calculate the g(2)(t, 0)-function, higher-order photon-assisted polarizations
must be computed, considering photon-density assisted ground and excited state densities.
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They are not changed in comparison to the derivation within the OEA, cf. Sec. 2.3 and
Eq. (2.15). The higher-order photon-assisted polarization reads within the SCE:

∂t

〈〈〈
a†vacc

†c†c
〉〉〉

c = (4.9)

= −2iM
[〈〈〈

a†cacc
†c
〉〉〉

c(1 −
〈〈〈
a†vav

〉〉〉
) −
〈〈〈
a†vavc

†c
〉〉〉

c
〈〈〈
a†cac

〉〉〉]

+ 4
〈〈〈
a†vacc

†
〉〉〉

cIm
[

M
〈〈〈
a†vacc

†
〉〉〉

c
]

− iM
〈〈〈
c†c†c c

〉〉〉
c
[〈〈〈

a†cac

〉〉〉
−
〈〈〈
a†vav

〉〉〉]

− 2iM̃
〈〈〈
c†c
〉〉〉 [〈〈〈

a†cacc
†c
〉〉〉

c −
〈〈〈
a†vavc

†c
〉〉〉

c
]

.

Again, the Pauli-blocking term for the spontaneous emission is changed and now photon-
assisted. The higher the order in the electron-photon coupling element, the more correction
terms originate from the cluster expansion method. Those corrections lead to interesting
terms in Eq. (4.9), such as the typical correlation expansion correction term ∝ |

〈〈〈
a†vacc†

〉〉〉
c|2.

The Hartree-Fock factorization in the higher-order photon-assisted polarization includes
additionally a photon density assisted Pauli-blocking, cf. first line in Eq. (4.9)). But in the
limit of few photons, this quantity is small in comparison to other contributions and is
often neglected [GWLJ07]. Together with the equations in Sec. 2.3, a closed set of differ-
ential equations is derived and can be solved for different initial conditions of the electron
and the photon system.
In Fig. 4.2(left), the Hartree-Fock contributions of the carrier-carrier interaction in the
second order of the electron-light coupling element is compared with the calculation for
systems, in which the OEA is valid. The excited state is assumed to be initially 1 and
no photons are in the cavity. In the SCE within the OEA (dashed, red line), the vacuum
Rabi oscillations lead to a negative probability for the electron density in the conduction
band state, cf. Sec. 2.3. Including the enhanced Pauli-blocking due to the implicit WL in-
teraction, the negativities are getting smaller, remain 10% large (green, solid line). Within
the first oscillation (up to 250 fs), the deviation between the OEA and the QD-WL case
is small and negligible. For longer times, a smaller Rabi frequency is observable for the
QD-WL case, but the solution is not valid for longer times [RCSK09a]. The same initial
values for the electron system is chosen in Fig. 4.2(right), but with three Fock photons
in the cavity p3 = 1, i.e.

〈〈〈
c†c†cc

〉〉〉
(0) = 6 and

〈〈〈
c†c
〉〉〉

= 3. In addition to the vacuum Rabi
oscillation, the electronic system is now driven by the cavity photons. Therefore, the Rabi
frequency is higher. The dynamics of the OEA (dashed, red line) and QD-WL case (green,
solid line) do not deviate much (percentage range). The Rabi frequency is the same and
the negativities, still present, are decreased due to the higher number of photons, corre-
sponding to a weaker correlation between electron and photon system, cf. Chap. 2. Note,
the influence of the Hartree-Fock modified spontaneous emission processes is smaller and
vanishes for a high number of photons.
Since negativities still occur, even within the Hartree-Fock factorization, causing a de-
creased oscillation amplitude, it is necessary to go beyond second order and investigate
within the SCE approach the dynamics up to the fourth order. At this level, it is also
possible to compute the g(2)(t, 0)-function. The intensity-intensity correlation

〈〈〈
c†c†cc

〉〉〉
is

driven by the photon-density assisted polarization in Eq. (4.9) and is the crucial quantity
to determine the quantum light statistics of the emitted light. In Fig. 4.3, the Hartree-Fock
contributions of the carrier-carrier interaction is compared to the calculations for systems,
in which the OEA is valid, now up to the 4th-order in the electron-photon interaction.
The initial conditions for the electron system is not changed and the excited state assumed
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Figure 4.2: Dynamics of the excited state density. Left: For the case of a initially occupied
conduction band,

〈〈〈
a†cac

〉〉〉
(0) = 1 and zero photons in the cavity, the Hartree-Fock factor-

ization (solid, green line) results in decreased negativity in comparison to the calculation,
in which carrier-carrier interaction is neglected (dashed, red line). Right: With the same
electronic initial conditions but with

〈〈〈
c†c
〉〉〉

= 6, to show, that for increasing photon number
inside the cavity, first, the negativity is reduced and the difference between Hartree-Fock
case and one-electron assumption becomes small.
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Figure 4.3: Dynamics of the excited state with higher contributions. Left: For the case of
a initially occupied conduction band,

〈〈〈
a†cac

〉〉〉
(0) = 1 and zero photons in the cavity, the

Hartree-Fock factorization (solid, green line) results in a decreased oscillation amplitude,
it is now positive and does not oscillate between 0 and 1, like expected for the OEA case
(dashed, red line). The HF does not better this result, but worsened it, by decreasing the
amplitude further (solid, green line). Right: With the same electronic initial conditions but
with p3 = 1. The deviation from the JCM is decreased.
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to be initially populated and for (left panel), the cavity is empty p0 = 1. The dynam-
ics of the OEA (dashed, red line) and the QD-WL case (solid, green line) differ strongly.
Negativities do not occur, but the oscillation amplitude is much too small compared to
the known result of the JCM solution, cf. Sec. 2.2. The enhanced Pauli-blocking decreases
the amplitude further as well as the Rabi frequency. In Fig. 4.3(right), the dynamics are
investigated with three photons in the cavity. Still, the OEA and the QD-WL do not differ
much. With a higher number of photons, the solution converges to the JCM solution and
the carrier-carrier interaction do not lead to a different dynamics.
The calculations show, the break down of the cluster expansion approach is not compen-
sated by the inclusion of many particle contributions in the Hartree-Fock regime. The JCM
solution is reproduced only for very high numbers of photons or emitters. For few photons
and few emitters, the cluster expansion breaks down. There is the urgent need, to introduce
a theoretical framework for the Hartree-Fock factorization, which incorporates the JCM as
well as the possibility to factorize the electronic field within a mean field theory.

4.2 Photon probability cluster expansion approach (PPCE)

In this section, the standard cluster expansion (SCE) is generalized to the limit of few
photons in systems with few quantum confined electronic levels such as semiconductor
QD-WL systems, cf. Fig. 4.1(a). So far, the SCE of

〈〈〈
a†ca

†
vavac

〉〉〉
provides access only to

large photon number dynamics or in weak coupling-short time limit (~M · t ≪ 1), where
M is the electron-photon coupling constant, cf. Eq. (4.1). In strong correlated dynamics,
the SCE becomes problematic, since the dynamics of relevant observables are not connected
directly to the photon number state. Examples include quantities such as

〈〈〈
a†cacc†c

〉〉〉
, which

include contribution from photon states with one and more photons, similarily the quan-
tity 〈a†cacc†c†cc〉, which includes contributions from two and more photons. However, it is
clear that this kind of expansion is not suitable, if correlations with a distinct number of
photons are of crucial importance.
A theoretical scheme, which attacks this problem for a single photon mode, but is easy to
extend to multiple photon modes, is presented in this section. This new approach allows
to treat few photon dynamics in many particle systems such as QD-WL systems with few
electronic levels, that contribute to the emission. This section is organized as follows: First,
the photon probability expansion is derived, cf. Sec. 4.2.1, expressing relevant observables
in terms of photon probabilities. In this probability picture, the JCM solution can be ana-
lytically re-derived and the inclusion of photon-statistics is discussed, cf. Sec. 4.2.2. Then,
a modified Hartree-Fock factorization rule is introduced in Sec. 4.2.3 and the modified
equations of motion are investigated, cf. Sec. 4.2.4.

4.2.1 Photon probabilities expansion

Important quantities to characterize a quantum optical field are the normalized intensity-

intensity correlation function g(2)(t, τ = 0) = 〈c†c†cc〉
〈c†c〉2

and the photon intensity g(1)(τ =

0) = 〈c†c〉 [MW95]. Both quantities can be measured and they are directly connected
to the photon number 〈c†c〉 and intensity-intensity expectation value 〈c†c†cc〉. The idea
to circumvent the problems characteristic for the SCE (cf. Sec. 4.1) is to formulate all
quantities in terms of n photon probabilities pn = 〈|n〉〈n|〉, where |n〉 denotes the Fock-
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state of n photons in the system. This idea is already succesfully applied in JCM, but
needs to be generalized to the many electron case. The PPCE introduced now combines
the advantages of the exact JCM-solution and the standard cluster expansion. Rewriting
the observables by introducing a complete set of eigenfunctions, thus inserting an identity
of the photon subspace: 1 =

∑

n

|n〉〈n|. (4.10)

The photon density reads:

〈〈〈
c†c
〉〉〉

=
〈〈〈
c†c1〉〉〉 =

∑

n

〈〈〈
c†c|n〉〈n|

〉〉〉
=
∑

n

n
〈〈〈
|n〉〈n|

〉〉〉
. =

∑

n

n pn. (4.11)

To calculate the photon density, one must solve an equation of motion for the photon
probability. The whole description of the combined electron and photon dynamics are
transfered onto the photon probabilities, which is comparable to the situation in the JCM.
In the JCM, the equations of motion are solved exactly for a single-photon subspace, in
which a photon is emitted or absorped from the state |n〉, cf. Sec. 2.2. So, instead of
calculating the whole photon hierarchy:

〈〈〈
c†c
〉〉〉
→
〈〈〈
c†c†cc

〉〉〉
→
〈〈〈
c†c†c†ccc

〉〉〉
→ · · · (4.12)

One calculates different photon probability subspaces. In this way, the calculation is orga-
nized and can be truncated safely, since it is easily to show, that for fixed initial conditions
(without environment coupling), certain photon probabilities are not driven. Therefore, it
exists an N from which on the photon probability pn is zero for all times, if no external
pump mechanism is included.
The equation of motion for the pn is derived via the Hamiltonian in Eq. (4.1) with the
Heisenberg equation of motion:

∂tpn = −2
√

n Im
[

M
〈〈〈
|n〉〈n − 1|a†vac

〉〉〉]

+ 2
√

n + 1 Im
[

M
〈〈〈
|n + 1〉〈n|a†vac

〉〉〉]

. (4.13)

To calculate the photon probability, the photon-assisted polarization enters the system
dynamics. Here, the single-electron case is considered, assuming quantities like

〈〈〈
a†ia

†
jakal

〉〉〉

to be zero for all time and combination of i, j, k, l = {v, c}.

∂t

〈〈〈
a†vac|n + 1〉〈n|

〉〉〉
= −i M

√
n + 1

(〈〈〈
a†cac|n〉〈n|

〉〉〉
−
〈〈〈
a†vav|n + 1〉〈n + 1|

〉〉〉)

. (4.14)

This form of the photon-assisted polarization includes the induced absorption and emission
processes, as well as the spontaneous emission. In Eq. (4.14) a new form of the phase-filling
factor is derived. The spontaneous emission and induced emission is included in the quantity
〈〈〈
a†cac|n〉〈n|

〉〉〉
, whereas the induced absorption is included in

〈〈〈
a†vav|n + 1〉〈n + 1|

〉〉〉
. To see
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that, one can transform Eq. (4.14) back into the photon operator picture. Details are found
in App. A.6. The photon-assisted valence and conduction band state densities read:

∂t

〈〈〈
a†vav|n〉〈n|

〉〉〉
= −2

√
n Im

(

M
〈〈〈
a†vac|n〉〈n − 1|

〉〉〉)

(4.15)

∂t

〈〈〈
a†cac|n〉〈n|

〉〉〉
= 2

√
n + 1 Im

(

M
〈〈〈
a†vac|n + 1〉〈n|

〉〉〉)

. (4.16)

In this expansion, the photon-assisted valence and conduction band density dynamics differ
strongly. This can be attributed to the rotating-wave approximation, already done in the
Hamiltonian. This results from the density matrix description, and that the valence state is
driven by a lower order of the photon-assisted polarization. Instead of the electron-picture,
one can formulate the same equations in the electron-hole picture, taking as photon-assisted
electron density f e

n =
〈〈〈
a†cac|n〉〈n|

〉〉〉
and as photon-assisted hole density fh

n =
〈〈〈
|n〉〈n|

〉〉〉
−

〈〈〈
a†vav|n〉〈n|

〉〉〉
. In this picture, the photon-probability reamains the same, but the photon-

assisted polarization reads now:

∂t

〈〈〈
a†vac|n + 1〉〈n|

〉〉〉
= +i M

√
n + 1 (pn+1 − fh

n+1) − i M
√

n + 1 f e
n. (4.17)

Quantum optical absorption and emission processes are related to fh
n = pn −

〈〈〈
|n〉〈n|a†vav

〉〉〉

and f e
n =

〈〈〈
|n〉〈n|a†cac

〉〉〉
for holes and electron densities assisted by n photons. Finally, the

electron and hole densities f
e/h
n are given by:

∂tf
e/h
n = 2

√
n + 1 Im

(

M
〈〈〈
a†vac|n + 1〉〈n|

〉〉〉)

. (4.18)

In the electron-hole picture, the dynamics of the photon-assisted electron and hole dynam-
ics obey the same equations of motion.
To close the hierarchy of equations of motion,

〈〈〈
a†ia

†
jakal|n〈n|

〉〉〉
= 0 is used and is strictly

valid only for the single electron case, since two electrons are annihilated. Eq. (4.13) and
Eqs. (4.17)-(4.18)) reproduce the JCM, numerically and analytically. This is an important
benchmark of the new PPCE, if the model is limited to one electron in the quantum dot,
see App. A.7.

4.2.2 PPCE and photon-statistics

Via the choice of initial conditions for the cavity field, the JCM calculates the dynamics
for different photon-statistics, such as thermal light and coherent light, cf. Sec. 2.2. In the
PPCE, the expectation values are expressed with the statistical properties, which is one of
the advantages of this approach. For example, the photon density is calculated with:

〈〈〈
c†c
〉〉〉

=
∑

n

n
〈〈〈
|n〉〈n|

〉〉〉
=
∑

n

n pn. (4.19)

The whole information of the quantum correlations are incorporated in pn. Different light
fields are characterized via the deviations around the mean photon number. Even with a
given mean photon number, e.g., the standard deviation can be different. Important ex-
amples are thermal and coherent distributions, cf. Sec. 3.2.3.
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Figure 4.4: Photon-statistics within the PPCE: thermal light and coherent light dynamics
for a two-level system, initially prepared in the excited state. The solution of the JCM
is reproduced. Superposition of Rabi oscillation lead to a complex oscillation pattern for
thermal light, and to the phenomenon of collapse and revival for coherent light.

The mean photon number of a thermal light field is n̄ =
〈〈〈
c†c
〉〉〉

with a probability distribu-
tion:

pn =
n̄n

(n̄ + 1)n+1
. (4.20)

To check this approach and the right choice of the statistical operator, the mean photon
number is calculated:

〈〈〈
c†c
〉〉〉

=
∑

n

n pn =

∞∑

n=0

n
n̄n

(n̄ + 1)n+1
=

(
n̄

n̄ + 1

)(
n̄

n̄ + 1

)−1 1

n̄ + 1

∑

n

n

(
n̄

n̄ + 1

)n

.

It is convenient to abbreviate q = n̄
n̄+1 < 1:

〈〈〈
c†c
〉〉〉

=
q

n̄ + 1

∑

n

n qn−1 =
q

n̄ + 1
∂q

[
∑

n

qn

]

=
q

n̄ + 1
∂q

[
1

1 − q

]

(4.21)

=
q

n̄ + 1

[
1

1 − q

]2

=
n̄

(n̄ + 1)2

[

1

1 − n̄
n̄+1

]2

=
n̄

(n̄ + 1)2
[n̄ + 1]2 = n̄.

The thermal light cavity dynamics are initialized with the given pn, also reproducing the
JCM. Another example is the coherent state, with a probability distribution, taken into
account the Poissonian statistics of the coherent light field:

pn =
n̄n

n!
e−n̄, (4.22)
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here n̄ = |α|2 corresponds to the mean photon number of the Glauber states. Again, the
expectation value is calculated:

〈〈〈
c†c
〉〉〉

= e−n̄
∞∑

n=1

n
n̄n

n!
= e−n̄

∞∑

n=1

n̄n

(n − 1)!
= n̄ e−n̄

∞∑

n=1

n̄n−1

(n − 1)!
, (4.23)

now the summation index changed into m = n − 1:

〈〈〈
c†c
〉〉〉

=
n̄

en̄

∞∑

m=0

n̄m

m!
=

n̄

en̄
en̄ = n̄. (4.24)

In Fig. 4.4, numerical evaluations of thermally and coherently prepared cavity dynamics
are plotted. The JCM solutions from Sec. 2.2 is reproduced within the PPCE approach.
Depending on the mean photon number, higher order of the n-photon probabilities need
to be taken into account.
However, the PPCE approach is not limited to the restrictions of the JCM, since it is now
possible to incorporate, e.g., enhanced Pauli-blocking due to carriers scatter in and out of
the quantum dot and violating the OEA.

4.2.3 PPCE and Hartree Fock factorization

In this section, a factorization rule for the photon-assisted electron-electron correlation is
derived. After expanding the photon system in terms of photon-probabilities pn =

〈〈〈
|n〉〈n|

〉〉〉
,

the equation of motion of the photon-assisted polarization beyond the OEA reads:

∂t

〈〈〈
a†vac|n + 1〉〈n|

〉〉〉
(4.25)

= −i M
√

n + 1
〈〈〈
a†cac|n〉〈n|

〉〉〉
+ i M

√
n + 1

〈〈〈
a†ca

†
vavac|n〉〈n|

〉〉〉

+ i M
√

n + 1
〈〈〈
a†vav|n + 1〉〈n + 1|

〉〉〉
− i M

√
n + 1

〈〈〈
a†va

†
cacav|n + 1〉〈n + 1|

〉〉〉
.

In Eq. (4.25), electron-electron correlations enter via e.g.
〈〈〈
a†va

†
cacav|n〉〈n|

〉〉〉
. To close the

set of differential equations, one needs to factorize electron correlations expectation values.
For example, in the lowest order, one describes a two-particle quantity via the dynamics
of electron single particle quantities. This is a mean field theory, in which a single carrier
is influenced by a mean field. This mean field is the first approximation to include carrier-
carrier interaction, here on a Hartree-Fock level. The usual Hartree-Fock approximation is
not applicable here, since the photon contributions are neither part of the one electron op-
erator pair nor of the other. The Hartree-Fock factorization needs to be modified according
to the photon dynamics, and photon expansion technique. Starting with the expectation
value, which needs to be factorized, one derives, given a state with n1 · · · nN electrons and
m photons:

〈〈〈
|n〉〈n|a†ia

†
jakal

〉〉〉
=

∑

m,{ni}

〈n1...nN ,m| |n〉〈n|a†ia
†
jakal ρ|n1...nN ,m〉

≈
∑

{ni}

〈n1...nN |a†ia
†
jakal 〈n|ρ|n〉|n1...nN 〉. (4.26)
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In the last line, the approximation is applied, that the photon state |n〉 does not include
any electronic contributions, for all times. In other words, the electron and photon system
on each photon-probability pn is in a quasi-equilibrium. Note, this is not equivalent to
the Born factorization. The statistical operator does not factorize. The GCSO includes
every contribution, in dependence on the choice of the observable set. Here, the GCSO is
projected onto the different photon-probabilities, resulting in the PPCE - GCSO:

ρpn =
1

pn
〈n|ρ|n〉. (4.27)

With pn in the denominator, the PPCE-GCSO is trace conserving. To illustrate this, an
example is given. A simple case is considered, in which the electron ρel and photon system
ρpt =

∑

m pm|m〉〈m| statistical operator are factorizing completely:

ρpn =
1

pn
〈n|ρ|n〉 =

1

pn
〈n|ρpt ⊗ ρel|n〉 =

1

pn
〈n|
∑

m

pm|m〉〈m| ⊗ ρel|n〉 (4.28)

=
1

pn

∑

m

pm〈n|m〉〈m|ρel|n〉 =
pn

pn
〈n|n〉ρel = ρel.

The Hartree-Fock GCSO now has a different form, assuming the electron-electron correla-
tions are describable on a single-particle basis, and this, for every photon-probability, the
GCSO reads:

ρ ≈ ρHF :=
e−

P

ij λija†
i aj

Z
→ ρpn =

〈n|ρ|n〉
pn

≈ 1

Z
e−

P

ij λn
ija†

i
a

j := σn
el. (4.29)

With this statistical operator (σn
el), the usual Hartree-Fock factorization, cf. App. A.5, is

calculated straightforward. Therefore, one introduces a pn/pn to realize this normalized
GCSO in Eq. (4.26) to yield:

〈〈〈
|n〉〈n|a†ia

†
jakal

〉〉〉
(4.30)

≈ pn

∑

{ni}

〈n1, ...nN |a†ia
†
jakal σ

n
el|n1...nN 〉

= pn

∑

cd

[

φdie
−λn,D

cc φ∗
ld

(1 + e−λn,D
cc )

][

φcje
−λn,D

dd φ∗
kc

(1 + e−λn,D

dd )

]

−




φdje

−λn,D
cc φ∗

ld

(1 + e−λn,D
cc )





[

φcie
−λn,D

dd φ∗
kc

(1 + e−λn,D

dd )

]

,

with λn,D
ii as the matrix element of the diagonalized matrix for the n-th photon-probability.

One calculates now with the same equilibrium assumption and introduced GCSO the single
electron quantity, to identify the contributions:

〈〈〈
|n〉〈n|a†ial

〉〉〉
≈

∑

{ni}

pn 〈n1...nN |a†ial σ
n
el|n1...nN 〉 =

∑

d

[

pn
φdie

−λn,D
cc φ∗

ld

(1 + e−λn,D
cc )

]

. (4.31)

77



4 Quantum dot - wetting layer cavity quantum electrodynamics

Now, in Eq.(4.30), one can identify the modified Hartree-Fock rule, by inserting again
pn/pn to take into account the pn contribution to the single particle quantity in Eq. (4.31):

〈〈〈
|n〉〈n|a†ia

†
jakal

〉〉〉
(4.32)

≈ 1

pn

∑

cd

[

pn
φdie

−λn,D
cc φ∗

ld

(1 + e−λn,D
cc )

][

pn

φcje
−λn,D

dd φ∗
kc

(1 + e−λn,D
dd )

]

−



pn

φdje
−λn,D

cc φ∗
ld

(1 + e−λn,D
cc )





[

pn
φcie

−λn,D
dd φ∗

kc

(1 + e−λn,D
dd )

]

=
1

pn

{〈〈〈
|n〉〈n|a†ial

〉〉〉〈〈〈
|n〉〈n|a†jak

〉〉〉
−
〈〈〈
|n〉〈n|a†iak

〉〉〉〈〈〈
|n〉〈n|a†jal

〉〉〉}

,

which defines the factorization rule, taken into account semiconductor many-particle con-
tributions, resulting from the independent hole and electron dynamics with valence and
conduction band state filling. The factorization rule originates from the assumption that
the photon and electron dynamics on every photon number is approximately described as
in equilibrium and thus with the statistical operator shown in Eq.(4.29). The GCSO does
not imply, that the total photon and electron dynamics are in equilibrium, which would
lead to a factorized statistical operator ρ = ρpt⊗ρel and result in a Born factorization rule:

〈〈〈
|n〉〈n|a†ia

†
jakal

〉〉〉
≈
〈〈〈
|n〉〈n|

〉〉〉〈〈〈
a†ia

†
jakal

〉〉〉
. (4.33)

This is only valid in case of a weak coupling, or a weak correlation between the photon and
electron dynamics, e.g. if the photons are treated as a bath [VWW01]. This assumption is
not valid in the case of a single QD coupled to single cavity mode in the strong coupling
limit, interesting for the deterministic single photon emission on demand [MKB+00].

4.2.4 PPCE and modified equations of motion

The equation of motion, describing the combined and strongly coupled electron-photon
dynamics, are modified due to the many-particle contributions in contrast to the equa-
tions, given within the mathematical induction approach in Chap. 3. Since in shallow
QD electrons and holes in the wetting layer interact with the carriers inside the QD, the
polarization dynamics of the QD is modified. New contributions occur in comparison to
the photon-assisted polarization in the one-electron assumption, Eq. (4.32), namely in
the braces. They lead to an enhanced Pauli-blocking. They decrease the impact of the
photon-assisted electron densities. In the electron-hole picture, [for the electron picture, cf.
App. A.8], the equation reads:

∂t

〈〈〈
a†vac|n + 1〉〈n|

〉〉〉
= −i M

√
n + 1

[

fh
nf e

n

pn
−
(
pn+1 − fh

n+1

) (
pn+1 − f e

n+1

)

pn+1

]

. (4.34)

The electron densities and the photon densities stay unchanged. The set of equations of
motion can be evaluated numerically for given initial conditions.
To investigate the impact of the modified spontaneous emission and induced absorption
and emission processes, the dynamics of the electron densities are depicted in Fig. 4.5 in the
OEA (dashed, red line) and including the WL Pauli-blocking (solid, green line) the photon
probabilities are p0 = 0.4, p1 = 0.6. In Fig. 4.5(left), the electron densities are set initially
f e = fh = 1. Since higher order photon-assisted polarization are driven with the photon-
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Figure 4.5: Dynamics of f e driven by cavity photons. Left: For the case of a initially
occupied conduction band state, f e = fh = 1 and p0 = 0.4, p1 = 0.6 photons in the cavity,
the Hartree-Fock factorization (solid, green line) results after 1 ps in a different dynamics,
compared to the OEA (dashed, red line). Right: With f e = fh = 0.5, the enhanced
Pauli-blocking is clearly visible. The oscillation amplitude is decreased, if the Hartree-Fock
factorization is included (green, solid line).

probabilities, the Pauli-blocking modifies the dynamics and decreases the Rabi frequency.
Higher order photon-probabilities lead to a collapse and revival similiar dynamics, which is
enhanced due to the Pauli-blocking. In Fig. 4.5(right), the electron densities are set initially
f e = fh = 0.5 and the picture does not change but the amplitude. The electron density
does not oscillate between 0.2 and the initial value 0.7, like in the case, in which the OEA
(dashed, red line) is valid. The amplitude is decreased due to the interplay between hole
and electron density with the independent carrier interaction of the WL. As an additional
important result, the Rabi frequency is also different. The Pauli blocking decreases the Rabi
frequency (solid, green line) although the amplitude decreased. This is clearly a situation,
which goes beyond the JCM, cf. Sec. 2.2. In the OEA, a decreased amplitude lead to a
higher Rabi frequency, e.g. in case of a detuning, cf. Sec. 3.2.2. Here, the amplitude is
decreased as well as the Rabi frequency. After 2 ps, the maximum of the dynamics are
clearly shifted. If more than one photon probabilities are inequal to zero in the beginning,
the Pauli-blocking factors modify the dynamics due to the denominator in Eq. (4.17).
In contrast to the JCM, the strength of the vacuum Rabi flopping is reduced in dependence
on how strong the electron and hole density deviates from the OEA fh = f e. This implies
that the amplitude of the Rabi flops might be used as a measure for the number of electrons
in the actual quantum dot. To connect this result to an easily accessible quantity, the g(2)-
function is calculated in the next section and the dynamics of the SCE and the PPCE are
compared.

4.3 Photon dynamics in the PPCE and SCE approach

The best benchmark for the new PPCE scheme is the case of vacuum Rabi flops, where
quantum fluctuations dominate the dynamics. The PPCE provides physical reasonable re-
sults as opposed to the SCE method: it guarantees positivity of the electronic density, cf.
Sec. 4.2.4. In particular, the exact solution of the JCM is recovered within the OEA for
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arbitrary initial conditions, cf. Sec. 4.2. In this section, the differences between the SCE
and PPCE are discussed within and beyond the validity of the OEA, focusing on the pho-
ton dynamics. The photon dynamics determine the easily accessible intensity correlation
g(2)(t, 0)-function and the photon density. Both depend strongly on the electron dynam-
ics discussed in the previously section. In Sec. 4.3.1, the differences within the OEA are
discussed, in which the PPCE-solution is identical with the JCM solution and is used as
a benchmark to determine to what extent the SCE is a good approximation in a QD-WL
system. Here, the investigation focuses on the g(2)(t, 0)-function. In Sec. 4.3.2, the results
of the PPCE are applied to extract the actual number of electrons in the QD from the
Rabi oscillation amplitude of the g(2)(t, 0)-function.

4.3.1 Intensity-intensity correlations within the Hartree-Fock approximation

The photon density, identical to the g(1)(t, τ = 0), and the g(2)(t, 0)-function, are very
interesting quantities for technological applications, and are well-known in atomic quantum
optics, in which the OEA is valid and results are known. To calculate the second-order
correlation g(2)(t, 0)-function within the SCE, one has to determine the correction quantity
〈〈〈
c†c†cc

〉〉〉
c, which is defined as the difference between the full correlation

〈〈〈
c†c†cc

〉〉〉
and the

sum of all possible factorizations, cf. Sec. 2.3:

〈〈〈
c†c†cc

〉〉〉
c =

〈〈〈
c†c†cc

〉〉〉
− 2(

〈〈〈
c†c†c

〉〉〉
c
〈〈〈
c
〉〉〉

c +
〈〈〈
c†cc

〉〉〉
c
〈〈〈
c†
〉〉〉

c +
〈〈〈
c†c
〉〉〉

c
〈〈〈
c†c
〉〉〉

c +
〈〈〈
c†c
〉〉〉

c
〈〈〈
c†
〉〉〉

c
〈〈〈
c
〉〉〉

c)

−
〈〈〈
c†c†

〉〉〉
c
〈〈〈
c
〉〉〉

c
〈〈〈
c
〉〉〉

c −
〈〈〈
cc
〉〉〉

c
〈〈〈
c†
〉〉〉

c
〈〈〈
c†
〉〉〉

c −
〈〈〈
c†c†

〉〉〉
c
〈〈〈
cc
〉〉〉

c −
〈〈〈
c†
〉〉〉

c
〈〈〈
c†
〉〉〉

c
〈〈〈
c
〉〉〉

c
〈〈〈
c
〉〉〉

c

which simplifies in case of Fock states in the cavity to

〈〈〈
c†c†cc

〉〉〉
c =

〈〈〈
c†c†cc

〉〉〉
− 2

(〈〈〈
c†c
〉〉〉

c
)2

. (4.35)

Other correlations are not driven and have an initial value of zero. In this case, the photon
density is equal to the correlation:

〈〈〈
c†c
〉〉〉

=
〈〈〈
c†c
〉〉〉

c. This is not valid, if coherent states are
assumed within the cavity, i.e. Glauber states, which have non-vanishing singlet expectation
values:

〈〈〈
c†
〉〉〉

[Gla63]. The g(2)(t, 0)-function is calculated in the SCE approach with:

g(2)(t, τ = 0) =
2
〈〈〈
c†c
〉〉〉

2 +
〈〈〈
c†c†cc

〉〉〉
c

〈〈〈
c†c
〉〉〉
2

= 2 +

〈〈〈
c†c†cc

〉〉〉
c

〈〈〈
c†c
〉〉〉

2
. (4.36)

Since the g(2)-function depends on the preparation of the cavity field, the correction term
depends on the initial conditions and has to be calculated with:

〈〈〈
c†c†cc

〉〉〉
(0) − 2

〈〈〈
c†c
〉〉〉

2(0) =
〈〈〈
c†c†cc

〉〉〉
c(0) = (g(2)(0) − 2)

〈〈〈
c†c
〉〉〉
2(0). (4.37)

Now, with a given set of initial conditions the equations of motion are evaluated and
the differences between the SCE and PPCE can be discussed with the OEA:

〈〈〈
a†cac

〉〉〉
=

1 −
〈〈〈
a†vav

〉〉〉
, which leads to the specific relation within the SCE, already mentioned and

discussed:
〈〈〈
a†cacc†c

〉〉〉
c = −

〈〈〈
a†vavc†c

〉〉〉
c.

For a high number of emitters, or a high number of photons inside the cavity, the SCE
and the PPCE converge, since for a high number of photons the SCE becomes a very
good approximation technique and is well established. In Fig. 4.6(left), the dynamics of
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Figure 4.6: Dynamics of the photon density g(1)(t, 0) and the intensity-intensity correlation
function g(2)(t, 0), calculated with the SCE (dashed, orange line) and the PPCE (solid,
green line) in the one-electron approximation (left) and for a QD-WL system (right). The
QD is initially excited and inside the cavity are g(1)(0) = 40 photons. The solutions differ
not much, but the Hartree-Fock factorization within the SCE results in a too high Rabi
frequency. The enhanced Pauli-blocking leads to a decreased oscillation amplitude for the
oscillation of the photon density and to a decreased photon-statistics.

the photon density and the g(2)(t, 0)-function is depicted for a high number of photons
initially inside the cavity and within the OEA. In this case, the SCE (dashed, orange
line) and the PPCE (solid, green line) converge. The higher the number of photons, the
better the SCE approximates the system, and the closer the SCE reproduces the JCM
solution, here derived within the PPCE. The photon density oscillates maximally between
40 and 41 with one QD in the cavity. The QD is initially in the excited state. However,
the Rabi frequency of the SCE solution deviates from the value of the exact model. The
SCE Rabi frequency is higher, approximately 1/3-of the JCM Rabi frequency, given by
Ω = M

√
N + 1 = M

√
41. This would be visibile in a calculated spectrum, but does not

change the photon-statistics of the quantum light emission from the QD, which is almost 1
for both solutions. The deviation is in a percentage-range, which is small, compared to the
value of 1. The mean value for the SCE is 1.0, the mean value of the PPCE almost 0.98.
For a even higher number, the mean value of the PPCE slowly converges g(2)(t, 0) → 1,
since the correlation function can be calculated for a Fock state with:

g(2)(t, 0) = 1 − 1
〈〈〈
c†c
〉〉〉
(t)

, (4.38)

which gives g(2) = 0.975 for N = 40, which is exactly the numerical value, visible in
Fig. 4.6(left). From about N = 100, the solution become the same, within less than one
percent. In Fig. 4.6(right), the initial conditions for the photon system are the same, but
the electronic system is in the state f e = 0.8 and fh = 0.4, to emphasize the QD-WL prop-
erties for typical initial conditions, beyond the OEA. Again, the SCE (dashed, orange line)
and the PPCE solutions (solid, green line) are compared. The difference is small due to the
high number of photons. One photon more or less does not change the electron-photon in-
teraction much. However, the Hartree-Fock factorization does not solve the problem of a too
high Rabi frequency in the SCE solution (dashed, orange line). Interestingly, the enhanced
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Figure 4.7: Dynamics of the photon density g(1)(t, 0) and the intensity-intensity correlation
function g(2)(t, 0), calculated with the SCE (dashed, orange line) and the PPCE (solid,
green line) in the one-electron approximation (left) and for a QD-WL system (right). The
QD is initially in the ground state. The Pauli-blocking leads to a decreased oscillation
amplitude for both solution, PPCE and SCE. In the SCE solution, negativities occur in
the g(2)(t, 0)-function oscillation.

Pauli-blocking leads to a decreased oscillation amplitude of the photon density, which here
is emphasized by the choice of the initial conditions. Moreover, the photon statistics is de-
creased also, in particular for the SCE solution. Without the Hartree-Fock Pauli-blocking
term, the photon-statistics oscillates between 1.02 and 0.98, with the Pauli-blocking term in
the spontaneous and induced emission, the g(2)-function oscillates only between 0.995 and
0.987. The SCE solution is closer to the PPCE solution now. The Pauli-blocking from the
many-particle carrier-carrier interaction leads to decreased g(2)(t, 0)-function. The funda-
mental problem with this theoretical approach cannot be solved and becomes more obvious
and problematic, if the QD is initially in the ground state.
In Fig. 4.7(left), the photon density and intensity-intensity correlation function is depicted
for a QD initially in the ground state and with two photons inside the cavity. The SCE
shows for the photon density (dashed, orange line) a strong deviation from the JCM solu-
tion. The oscillation amplitude is decreased, but now, the photon density does not reach 1
and does not create a full excitation within the system in contrast to the PPCE solution
(solid, green line), which correspond to the expected behavior. The decreased amplitude
leads now for the intensity-intensity correlation function to a obvious failure of the SCE,
since the positively defined correlation function becomes negative and oscillates between
0.5, which is the expected maximum, and −3, which exceeds the minimum 0 of the JCM
solution. Even without a benchmark, this failure leads to the conclusion, that within the
OEA, the SCE is valid only for a high number of emitters, whereas the PPCE provides a
theoretical framework to rely on. In Fig. 4.7(right), the QD-WL case is investigated with
a QD initially in f e = 0.4 and fh = 0.2. Two photons are inside the cavity. The Pauli-
blocking factor leads to the decrease in the oscillation amplitude, now for both, the PPCE
and the SCE solution with the result, that the negativities in the g(2)(t, 0)-function become
smaller for the SCE. The PPCE secures the positivity of the g(2)(t, 0)-function, as long as
the limit of the Hartree-Fock approximation is valid. The comparison now favoures clearly
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Figure 4.8: Dynamics of the g(2)(t, 0)-function (solid, orange line) and the electron density
(dashed, blue line) for different initial conditions of the electronic system NE = 1+f e−fh

and initially two photons in the cavity. (a) NE = 0: No dynamics for the g(2)(t, 0)-function,
since no electrons in the QD; (b) NE = 1: Cavity dynamics lead to strong Rabi oscillations
in the one-electron limit fh = f e; (c) NE = 1.5: the number of electron and holes are
increased, the oscillation amplitude is smaller due to Pauli-blocking; and (d) NE = 2: Full
Pauli-blocking prevent cavity dynamics.

in the single-photon limit, with few emitters and few photons, the theoretical approach of
the PPCE.

4.3.2 Pauli-blocking dependent Rabi oscillation amplitude

The Pauli blocking term occurring in the QD-WL system does not lead to strong deviations
from the JCM solution for short times. The impact of the Pauli-blocking terms depends
strongly on the number of electrons and holes in the QD, without environment coupling,
e.g. electrical pumping. Since the g(2)(t, 0)-function is an easy accessible observable and
the time evolution is, in principle, measurable, the amplitude can be used as a measure
for the number of electrons and holes in the actual QD for the QD-WL system. In those
systems, the oscillation amplitude differs for different initial conditions in the electronic
system strongly.
Focusing on the specific QD-WL properties, in Fig. 4.8, the dynamics of the electron density
(dashed, blue line) and the g(2)(t, 0)-function (solid, orange line) is depicted for different
initial conditions in the electronic field, the number of electrons and holes in the QD with
NE = 1 − fh + f e =

〈〈〈
a†vav

〉〉〉
+
〈〈〈
a†cac

〉〉〉
. The cavity has two photons in the beginning, i.e.

p2 = 1 and the photon-statistics is anti-bunched:

g(2)(t = 0, 0) =

∑

n n(n − 1)pn

(
∑

n npn)2
=

2

(2)2
=

1

2
. (4.39)

Via the choice of different initial values for the total number of electrons and holes in
the QD, the impact of the Pauli-blocking on the oscillation behavior can be investigated.
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Figure 4.9: The PPCE solution for semiconductor quantum dots. The oscillation amplitude
of the first two Rabi flops of the g(2) for PPCE is plotted over the number of electrons in
the quantum dot, with p1 = 1.0 (black/straight) and p2 = 1.0 (red/dashed).

In Fig. 4.8(a), there is no electron in the QD and no dynamics takes place. The photon-
statistics is constantly g(2) = 0.5 and the electron density f e = 0. In Fig. 4.8(b), the
total number is increased to NE = 1 by setting fh = f e = 0, or assuming

〈〈〈
a†vav

〉〉〉
= 1.

Dynamics take place, the electron density oscillates strongly with an amplitude of nearly 1,
and the g(2)(t, 0)-function follows with an oscillation amplitude of about 0.3. For a higher
total number of electrons and holes, NE = 1.5, or

〈〈〈
a†cac

〉〉〉
= 0.5 and

〈〈〈
a†vav

〉〉〉
= 1, the

oscillation amplitude is decreased again, cf. Fig. 4.8(c). The photon cannot be absorbed,
since the excited and ground state are Pauli-blocked. Due to the Hartree-Fock terms,
this Pauli-blocking is enhanced: a specific phenomenon of the many-particle interaction
in semiconductor cavity-QED. In Fig. 4.8(d), the Pauli-blocking is full and cannot be
enhanced. Excited and ground state are populated. The photon cannot be absorbed and
no further photon can be emitted. The g(2)(t, 0)-function is constant and 0.5. The total
number of electrons and holes determines the oscillation amplitude of the g(2)(t, 0)-function
and of the electron and hole density. This corresponds to the impact of the photon numbers.
If the photon number is high in the cavity, the oscillation amplitude of the g(2)(t, 0)-function
is small. For electrons and holes, the oscillation amplitude depends on the Pauli-blocking
in the system.
This is illustrated more clearly in Fig. 4.9. The number of electrons and holes in the
quantum dot is plotted as a function of the oscillation amplitude maximum of the g(2)(t, 0)-
function, which is directly connected to the maximum of vacuum Rabi flopping. It is
seen that a maximum is achieved, if the total number equals one: NE = 1, i.e. fe = fh,
corresponding to the one-electron assumption. This behaviour can be attributed to the
Pauli-blocking terms fn

e · fn
h , because they drive the emission and are enhanced in the

one electron case. In conclusion: A modified cluster expansion scheme is introduced to
describe semiconductor quantum dot - wetting layer quantum optical devices in the strong
coupling limit involving few photons and few dominant electronic states. This photon-
probability-cluster expansion (PPCE), reproduces the JCM as a well-known benchmark in
quantum electrodynamics, which the standard cluster expansion (SCE) cannot reproduce.
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To illustrate its strength, the new set of equations are applied to the case of vacuum Rabi
flopping, where quantum fluctuations are dominant. For the QD-WL system, it is shown
that the amplitude of the vacuum Rabi flopping and the maximum of g(2)(t, 0) depend on
the numbers of electrons and holes pumped into the actual quantum dot device. This is a
first important prediction from the PPCE. The next step is to introduce the environment
coupling to the PPCE, e.g. cavity loss and electrical pumping mechanism.

4.4 PPCE and environment coupling

Semiconductor QDs in this thesis are assumed to be self-assembled QDs, grown with the
Stranski-Krastanoff method [GSB95]. The optical and electrical properties are strongly in-
fluenced by the surrounding material, the bulk material with the phonons, and the wetting
layer, and or the carrier reservoir [Sti01]. The environment coupling includes dephasing pro-
cesses as well as pumping processes. In the following, two important examples are given: the
cavity loss, calculated within the PPCE and the electrical pumping. Hereby, the PPCE is
introduced as a theoretical framework, pronouncingly able to include these coupling mech-
anism microscopically [SRK+10; RCSK09a; CRD+10; DMR+10]. For application studies,
it is highly desirable to take into account the parameter dependencies and to introduce
a theoretical framework, in which the environmental coupling mechanisms can be studied
and their impact on the emission properties can be predicted.
In particular, carrier inscattering are of interest for technological applications, cf. Sec. 4.4.1,
emission into non-lasing modes expressed with β−factor in Sec. 4.4.2, and cavity loss in
Sec. 4.4.3. This section focuses on these three environment couplings to discuss the tem-
poral dynamic of the single photon device.

4.4.1 Electrical pumping

It is highly desirable to drive devices electrically, instead optical pumping [LST+09]. To
minitiuarize the device, injection current, carrier scattering, and quantum light emission
is the ideal choice [BAS+06]. In a QD, embedded in a carrier reservoir, which is embed-
ded in the semiconductor bulk material, carrier injection can be experimentally realized
[YKS+02]. This is one of the great advantages of semiconductor physics, and it is the goal
to exploit the advantages and at the same time to overcome the known problems with
semiconductor nanostructure based devices, such as the high dephasing due to phonons or
Coulomb scattering [BLS+02] .
In an electrically pumped QD structure carriers are injected into the bulk material, relax
into the WL / carrier reservoir and from there into the optically active (3D confined) QD
states [PRS+07]. There are two basic scattering channels: i) relaxing carriers that translate
their energy to other carriers via Coulomb interaction [SCK01] and ii) carriers relax by
emission of phonons [DMR+10]. The first case is important at high carrier densities, at
low carrier density regime it is focused on the electron-phonon interaction, using the effec-
tive Hamiltonian approach, cf. Sec. 3.5.6. Phonons and carriers, external electrons, in the
carrier reservoir are treated as bath. It is assumed that cavity mode photons and electrons
are uncorrelated to the inscattering electrons and holes. As a result, the density matrix ρ
of the full system can be expressed at any time as ρ(t) ≈ ρsys(t) ⊗ ρbath(t) with a system
part ρsys(t) describing the quantum dots low energy electron states and the cavity mode
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and with ρbath(t) describing all other electronic states and bosonic baths.
Therefore for any electronic states of the bath i,j and for the QD electronic states k and l,
the factorization rules read 〈|n〉〈n|a†ia

†
kalaj〉 ≈ 〈|n〉〈n|a†kal〉〈a†iaj〉. The in-scattering rates

Sin and the out-scattering rates Sout for electrons and holes are calculated via this factor-
ization and a corresponding interaction Hamiltonian between the QD and WL electronic
states, including blocking and heating self-consistently [KMR+10a]. Here, the in-scattering
and out-scattering is taken as a parameter. The electron and hole dynamics restricted to
the electrical pump mechanism reads:

∂tf
e
n|pump = Sin

e (pn − f e
n) − Sout

e f e
n (4.40)

∂tf
h
n |pump = Sin

h (pn − fh
n ) − Sout

h fh
n (4.41)

So only an index n is added to f ·
n and 1 is replaced by pn compared to the SCE inscattering

terms [SRK+10; CRD+10]. Note, that Sin and Sout do not depend on the photon manifold:
Such a dependence will appear if the correlations with the photons is also considered for
the inscattering electronic states or cross terms between the inscattering mechanisms and
the electron-photon interaction. Whether the pump processes are phonon- or Coulomb
assisted, the scattering rates S differ and include the specific properties of the interaction
between electron and holes [DMR+10]. Furthermore, the external pumping introduces a
contribution to the dephasing of the microscopic polarization:

∂t

〈

|n + 1〉〈n|a†vac

〉

|pump = −1

2
(Sin

e + Sin
h + Sout

e + Sout
h )〈|n + 1〉〈n|a†vac〉 (4.42)

= −γc
p

〈〈〈
|n + 1〉〈n|a†vac

〉〉〉

due to the out scattering from the QD ground state to other states. γc
p is the pure dephasing

contribution of the in- and out-scattering of carriers. In particular in the strong pumping
regime, the scattering induced dephasing term is important.

4.4.2 β-factor

To simulate a realistic laser dynamics inside the cavity, one needs to take into account the
emission into non-lasing modes [CKI94], leading to a loss of excitation of the electronic
system without a contribution to the photon density. To derive this loss, an interaction
Hamiltonian with the non-resonant, non-lasing modes is considered:

Hel-nl = −~

N∑

i=1

Mki
a†vacc

†
ki

+ h.c., (4.43)

in which k0 is the cavity mode and all other ki are leading to a loss, i.e. are not strongly
coupled to the QD inside the cavity [YTC00; Car99]. The completeness relation is fulfilled
with n := nk0

and nk1
· · ·nkN

, counting the photons in the lasing and non-lasing mode,
respectively:

∑

n

∑

nk1

· · ·
∑

nkN

|n, nk1
· · ·nkN

〉〈n, nk1
· · ·nkN

| =
∑

n,{nk}

|n, {nk}〉〈n, {nk}| = 1. (4.44)
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With the completeness relation of the modes, it is convenient to trace out the non-lasing
modes to study the laser dynamics of the system, for instance the dynamics of the photon-
assisted electron and hole densities:

∑

n,{nk}

|n, {nk}〉〈n, {nk}| =
∑

n

|n〉〈n| ⊗ 1{nk}, (4.45)

where n counts the photons in the lasing modes and {nk} the photons in the non-lasing
modes. The interaction with the non-lasing modes result in a decay of the electron and hole
densities. Excitation is lost, but no photons in the cavity mode are created. The dynamics
of the photon-density assisted electron and hole density reads:

∂tf
e/h
n,{nq}

(4.46)

= 2
√

n + 1 Im
[

M
〈〈〈
a†vac|n + 1, {nk}〉〈n|, {nk}

〉〉〉]

+ 2
N∑

i=1

√

nki
+ 1 Im

[

Mki

〈〈〈
a†vac|n, nk1

· · ·nki
+ 1 · · · nkN

〉〈n, {nk}|
〉〉〉]

The non-dynamical contributions of the non-lasing modes is sumed up to study the laser
dynamics in the cavity:

∑

{nq}

∂tf
e/h
n,{nq}

= ∂tf
e/h
n (4.47)

= 2
√

n + 1 Im
[

M
〈〈〈
a†vac|n + 1〉〈n|

〉〉〉]

+ 2

N∑

i=1

∑

{nki
}

√

nki
+ 1 Im

[

Mki

〈〈〈
a†vac|n, nk1

· · ·nki
+ 1 · · · nkN

〉〈n, {nk}|
〉〉〉]

.

Now, the dynamics of the photon-assisted polarization of the non-lasing must be investi-
gated, since in this equation the spontaneous emission enters the dynamics via the electron
density. The process of spontaneous emission is crucial for the β-factor, here the sponta-
neous emission into the non-lasing mode, which is not strongly coupled to the electron
transition in the QD:

∂t

〈〈〈
a†vac|n, nk1

· · ·nki
+ 1 · · · nkN

〉〈n, {nk}|
〉〉〉

(4.48)

= −i (ωcv − ωki
+ iγp)

〈〈〈
a†vac|n, nk1

· · ·nki
+ 1 · · · nkN

〉〈n, {nk}|
〉〉〉

− i Mki

√

nki
+ 1 f e

n,{nk}
− i Mki

√

nki
+ 1 (pn,nk1

···nki
+1···nkN

− fh
n,nk1

···nki
+1···nkN

),

where the pure dephasing γp is included, e.g. due to longitudinal acoustical phonon inter-
action of the QD carriers with the bulk phonons. Non-lasing modes do not contribute to
the photon density inside the cavity. In consequence, quantities such as

〈〈〈
a†vav|nk〉〈nk|

〉〉〉
=

0,
〈〈〈
a†cac|nk〉〈nk|

〉〉〉
= 0 vanish for k 6= k0 and nk ≥ 1, and the photon probability distribution

reduces to

〈〈〈
c†ki

cki

〉〉〉
=
∑

nki
=0

nki

〈〈〈
|nki

〉〈nki
|
〉〉〉

= 0. (4.49)
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It is valid for all time: pn,nk1
···nki

+1···nkN
=0 = fh

n,nk1
···nki

+1···nkN
, since no occupation in the

non-lasing modes is possible. The validity of this assumption depends on the quality factor
of the cavity to support only one mode [Vah03]. No feedback of non-lasing mode photons
is possible and thus, no induced processes. Therefore, the polarization dynamics can be
solved in the adiabatic limit, bearing in mind that higher order photon-assisted processes
and strong coupling interaction mechanism do not enter into this equation [SRK+10], and
the time dependence is omitted, as well:

〈〈〈
a†vac|n, nk1

· · ·nki
+ 1 · · ·nkN

〉〈n, {nk}|
〉〉〉

=
Mki

√
nki

+ 1

ωcv − ωki
+ iγp

f e
n,{nk}

(4.50)

= Mki

√

nki
+ 1

ωcv − ωki
− iγp

(ωcv − ωki
)2 + γ2

p

f e
n,{nk}

.

Now, the result in Eq. (4.50) enters in Eq. (4.47):

∂tf
e/h
n (4.51)

= 2
√

n + 1 Im
[

M
〈〈〈
a†vac|n + 1〉〈n|

〉〉〉]

− 2 γp

N∑

i=1

∑

{nk}

|Mki
|2(nki

+ 1)

(ωcv − ωki
)2 + γ2

p

f e
n,{nki

}.

The vanishing non-lasing mode density needs to be taken into account: nki
= 0 and,

assuming the vanishing contribution of non-lasing mode photons to the system dynamics,
the sum over the non-lasing modes can be computed:

∂tf
e/h
n = 2

√
n + 1 Im

[

M
〈〈〈
a†vac|n + 1〉〈n|

〉〉〉]

− 1

τnl
f e

n, (4.52)

in which the rate of the spontaneous emission into the non-lasing mode is defined as:

1

τnl
= 2 γp

N∑

i=1

|Mki
|2

(ωcv − ωki
)2 + γ2

p

. (4.53)

Since β defines the fraction of the total spontaneous emission 1
τsp

into the lasing-mode 1
τl

,
one may write:

β =

1
τl

1
τsp

=

1
τl

1
τl

+ 1
τnl

−→ 1

τnl
=

(
1

β
− 1

)
1

τl
=

1 − β

βτl
=

1 − β

τsp
. (4.54)

The total rate of spontaneous emission depends on the microcavity and its quality-factor,
and is enhanced by the Purcell effect and can be assumed in the order of τsp = 50 ps
[RSL+04]. The β-factor is in the following used as an input-parameter.
The coupling to the β-factor is changed in the QD-carrier reservoir scheme, since the
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source term of the spontaneous emission is modified, Sec. 4.2.4. The derivation is similar,
but Eq. (4.50) reads in the QD-WL case:

〈〈〈
a†vac|n, nk1

· · ·nki
+ 1 · · · nkN

〉〈n, {nk}|
〉〉〉

(4.55)

= Mki

√

nki
+ 1

ωcv − ωki
− iγp

(ωcv − ωki
)2 + γ2

p

〈〈〈
a†cava

†
vac|n, {nk}〉〈n, {nk}|

〉〉〉
,

with the consequence after the modified Hartree-Fock factorization, that the electron/hole
dynamics is changed to:

∂tf
e/h
n = −1 − β

τsp

f e
nfh

n

pn
+ 2

√
n + 1 Im

[

M
〈〈〈
a†vac|n + 1〉〈n|

〉〉〉]

. (4.56)

In Eq. (4.56), the environment is included in the modified decay factor of the electron
and hole densities and is a remarkable improvement to previous theoretical approaches in
the few photon and few emitter dynamics, discussing semiconductor specific properties of
quantum light emitter.

4.4.3 Cavity loss

To exploit the properties of the emitted
quantum light, e.g. to excite another quan-

Figure 4.10: Scheme of cavity loss.

tum system in a coupled quantum sys-
tem setup [KK08; Car93], a cavity loss
needs to be considered [Car99]. In par-
ticular for single-photon emission, the
cavity loss parameter is of great impor-
tance, since one photon needs to be emit-
ted at a time, before a second photon is
created via induced emission processes.
Focusing on repetition rate, the cavity
loss is the crucial factor, e.g. how fast
the system enters the steady state. Theoretically, cavity loss results from a tunnel Hamil-
tonian, in which dissipative photon modes q couple via the mirror with the cavity photons,
cf. Fig. 4.10 [YTC00]. These photon states outside of the cavity are coupled to the cav-
ity modes [Car99]. The coupling of the cavity modes to the external modes is decribed
by an additional part in the Hamilton operator [VWW01], which reads together with the
homogenous part of the external photons:

Hpt−pt = ~

∑

q

ωqd
†
qdq + ~

∑

q

Gq(c
† + c )(d†q + dq), (4.57)

The probability of the tunneling process from the cavity into the environment is determined
by the strength of the coupling element Gq of the mode q. The cavity loss via external
photon modes is described by dq,d

†
q. Only contributions within the rotating-wave approx-
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imation are considered. The dynamics, calculated only for the photon-photon interaction
reads for an arbitrary QD operator A assisted by |n〉〈m| cavity photons:

∂t

〈〈〈
A|n〉〈m|

〉〉〉
|pt−pt = i(n − m)ω0

〈〈〈
A|n〉〈m|

〉〉〉
(4.58)

+i
∑

q

Gq

(√
n + 1

〈〈〈
A|n + 1〉〈m|dq

〉〉〉
+

√
n
〈〈〈
A|n − 1〉〈m|d†q

〉〉〉)

+i
∑

q

Gq

(√
m + 1

〈〈〈
A|n〉〈m + 1|d†q

〉〉〉
+

√
m
〈〈〈
A|n〉〈m − 1|dq

〉〉〉)

.

Applying a rotating frame for convenience, for details App. A.9, the dissipative photon
mode assisted quantities are calculated, to derive the set of equations up to the second
order in the tunneling matrix couling element. Following as an example is given:

∂t

〈〈〈
A|n〉〈m|dq

〉〉〉

R|pt−pt ≈ −iGq

√
m + 1

〈〈〈
A|n〉〈m + 1|

〉〉〉

R e−i(ω0−ωq)t. (4.59)

Contributions proportional to
〈〈〈
d
(†)
q d

(†)
q′

〉〉〉
are neglected within the bath assumption, since

only dissipation is taken into account [See App. A.9 for details]. The bath photon do not
couple back into the cavity. The mean photon number is too low in the bath to consider
a tunnel process in the reversed direction. The equation is solved by integrating formally
and applying the Markovian approximation and assuming memory effects are negligible.
This is a good approximation in system-bath processes with coupling strength suggesting
interaction times higher than ps-scale. The solution reads:

〈〈〈
A|n〉〈m|d†q

〉〉〉

R(t)|pt−pt ≈ iGq

√
n + 1

〈〈〈
A|n + 1〉〈m|

〉〉〉

Rei(ω0−ωq)t

∫ ∞

0
dτe−i(ω0−ωq)τ . (4.60)

If the lower limit is not extended from 0 to −∞, the integral is the Heitler-Zeta function
ζ(ω0 − ωq), consisting of the delta-function and of the Cauchy-principal value integral.
It must be checked, to what extent the Cauchy-principal vaule integral contributes to
the dynamics, normally an energy renormalization occurs, which can be included into the
definition of ω0 [Car99; SZ97]. The solution is plugged into the Eq. (4.59) to derive the
cavity-loss for the general quantity

〈〈〈
A|n〉〈m|

〉〉〉
, by defining:

κ :=
∑

q

|Gq|2 ζ(ω0 − ωq), (4.61)

the PPCE formulation of the Markovian cavity loss, including energy renormalization is
derived and can be expressed as:

∂t

〈〈〈
|n〉〈m|A

〉〉〉
|ph−ph = −(m + n)κ

〈〈〈
|n〉〈m|A

〉〉〉
+ 2

√
m + 1

√
n + 1κ

〈〈〈
|n + 1〉〈m + 1|A

〉〉〉
.(4.62)

In the PPCE formalism, the dynamics of the photon loss describes the loss and gain of
photons of the different photon probabilities self-consistently. The dynamics of the pho-
ton probabilities are easier in the electron-photon interaction, but more complicated for
the photon-loss, since inscattering from higher order photon probabilities need to be con-
sidered. Therefore, the cavity loss appears more complicated than in the picture of the
c†, c-operator picture. An example is given in the App. A.9. The photon-probability ap-
proach opens up further insight into the combined electron-photon dynamics, even in the
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case of the Markovian-derived cavity loss. The few-electron approach, i.e. the need to fac-
torize in the electronic system, does not enter in this derivation of the cavity loss, since
the cavity loss results solely from the photon-photon interaction.

4.4.4 Quantum dot - wetting layer laser equations

After discussing important processes, that couple the QD-WL cavity QED dynamics to
the environment, the results are summarized and concluded with following equations of
motion. Starting with the probability to have n photons in the system, it is obtained:

∂tpn = −n2κpn + (n + 1)2κpn+1 (4.63)

−2
√

nIm
[

M
〈〈〈
a†vac|n〉〈n − 1|

〉〉〉]

+ 2
√

n + 1Im
[

M
〈〈〈
a†vac|n + 1〉〈n|

〉〉〉]

,

including now the cavity loss process. The impact of the environment coupling on the
dynamics of the transistion is larger, since electronic and photonic observables are included:

∂t

〈〈〈
a†vac|n + 1〉〈n|

〉〉〉
= (4.64)

= −i(ωcv − ω0 − iγ)
〈〈〈
a†vac|n + 1〉〈n|

〉〉〉

− κ(2n + 1)
〈〈〈
a†vac|n + 1〉〈n|

〉〉〉
+ κ
√

(n + 1)(n + 2)
〈〈〈
a†vac|n + 2〉〈n + 1|

〉〉〉

− i M
√

n + 1

[

f e
nfh

n

pn
−
(
pn+1 − fh

n+1

) (
pn+1 − f e

n+1

)

pn+1

]

,

where the different pure dephasing contributions are included in γ (pump process and
contributions originating from the interaction with LA phonons). The non-lasing modes do
not change the strongly coupled microscopic polarization dynamics of the cavity photon
assisted transition. The β-factor enters only in the dynamics of the electron and hole
densities, as well as the pump mechanism:

∂tf
e/h
n = − 1 − β

τsp

f e
nfh

n

pn
+ 2

√
n + 1 Im

[

M
〈〈〈
a†vac|n + 1〉〈n|

〉〉〉]

(4.65)

− 2κ
[

n f e/h
n − (n + 1)f

e/h
n+1

]

+ S
e/h
in (pn − f e/h

n ) − S
e/h
out f

e/h
n .

These equations together constitute the theoretical framework of the single photon emitter
realized by a single quantum dot. Parameter dependent quantum light emission can now
be studied and specific semiconductor properties be discussed. Conveniently, the full infor-
mation about the quantum light is self-consistently included in the pn distribution, which
is time resolved accessible.

4.5 Electrically pumped single photon emitter

Due to the environment, the dynamics of the QD carriers is strongly damped. Pure de-
phasing, cavity loss and the spontaneous emission into non-lasing modes lead to dephasing
and typical strong coupling signatures like Rabi oscillations are not seen. Furthermore,
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the pump mechanism leads to an additional dephasing and the dynamics is additionally
damped via carrier relaxation and scattering from the WL to the QD states. First, the
laser dynamics of an electrically driven QD is discussed, cf. Sec. 4.5.1, in different pumping
regimes, from weak to strong pumping. This leads to different cavity field photon-statistics
from the anti-bunching to the coherent regime. In Sec. 4.5.2, parameter dependent quan-
tum light emission is studied, i.e. the dependence of the g(2)(t, 0)-function on the electron-
photon coupling strength, the cavity loss and detuning between the cavity mode ω0 and
the QD transition energy ωcv. Finally, the atomic rate equation model is compared with
the semiconductor model in Sec. 4.5.3. It is shown, that enhanced Pauli-blocking in semi-
conductor quantum light devices is advantageous for single-photon emission.

4.5.1 Laser dynamics of an electrically driven QD

In Fig. 4.11, the dynamics of the carrier and photon related observables are depicted with-
out an electrical pump mechanism. The QD is populated initially with an electron density
of f e = 1 and a hole density of fh = 0.7. One photon is initially in the cavity. The
photon probability distribution reads: p0 = 0, p1 = 1, pn = 0 for n ≥ 1. A cavity loss of
κ = 0.018 meV and a pure dephasing of γp = 0.1 meV takes the environment coupling into
account. The cavity has a β-factor of 0.9 and a Purcell enhanced spontaneous emission
rate of τsp = 50 ps and the QD transition frequency ωcv is in resonance with the cavity
mode ω0 [RSL+04]. These parameters are chosen for all calculations in this section with a
electron-photon coupling strength of M = 0.22 meV [MIM+00].
On the left of Fig. 4.11, the carrier dynamics of the QD is depicted. The electron den-
sity f e (blue, solid line) shows oscillation as a feedback photon phenomenon of strong
coupling. The electron density is driven by the microscopic polarization

〈〈〈
a†vac

〉〉〉
(orange,

dotted line). The polarization shows the oscillations of the phase filling factor or inver-
sion

〈〈〈
a†cac

〉〉〉
−
〈〈〈
a†vav

〉〉〉
, including the process of spontaneous emission [SZ97]. Here, the pure

dephasing attacks the polarization dynamics and stops the oscillation after 35 ps. In conse-
quence, the Rabi oscillation of the electron density stops at the same time. The polarization
is damped to zero and after the polarization dynamics comes to a stop, the electron density
is damped only via the cavity loss and the spontaneous emission into non-lasing modes.
The right side of Fig. 4.11 shows the dynamics of the photon observables. The photon
density

〈〈〈
c†c
〉〉〉

(red, solid line) is one at t = 0 due to the initial conditions. Since the QD
is initially populated, the exciton recombines and an additional photon is created. The
photon density rises. Due to the cavity loss, the photon occupation is decreased before the
photon density reaches 2. The photon density decays to zero in dependence on the cavity
quality factor. The oscillation of the photon density stops after 35 ps, also. The intensity-
intensity correlation g(2)(t, 0)-function (green, dotted line) shows longer oscillation due to
the cavity loss mechanism. The oscillation is expected to peak at around 0.5, since single
photon interact in the cavity. Anti-bunching is visible. For the time scale of the decaying
electron density, single photons are emitted out of the cavity until the whole dynamics
stops. Without pumping mechanism, the stationary state is zero for the observables and
for the polarization. However, if the system is pumped, a non-trivial stationary state is
reached with values inequal to zero.
Now, a stationary electrical pump mechanism is considered:Sin/out

e/h 6= 0. Initially, the QD
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Figure 4.11: QD as a single photon emitter, using the parameters M = 0.22 meV, γp =
0.1 meV and κ = 0.018 meV without electrical pumping. Dynamics show Rabi oscillation.

is unoccupied. A typical, low carrier density regime (8 × 109(cm)−2) value of thermal oc-
cupation probability is around f e ≈ 0.001 at 70 K. Therefore, the initial conditions are
chosen with f e/h(0) = 0 and no photons are assumed in the cavity: p0(0) = 1, pn(0) = 0
for n ≥ 1. In the following, holes and electrons are equally pumped: Se

in = Sh
in = Sin and

Se
out = Sh

out = Sout, and three pump regimes are investigated: weak, transient and strong
pumping strength. These regimes correspond to a transition from single-photon emission
(weak) to lasing well above threshold (strong).
In Fig. 4.12(left), a weak electrical pumping drives the QD dynamics: Sin = 4ns−1 and
the out-scattering is Sout = 0.1Sin. With increasing pump duration, an electron and a hole
density is built up in the QD (solid, blue line). After 10 ps, electrons and holes start to
recombine. The photon density (dotted, green line) rises. Emission processes are slowed
down by the dephasing in the system and the cavity loss leads to a loss of photons as
well. After 100 ps, the g(2)(t, 0)-function reaches a stationary value of approximately 0.3,
within the single-photon limit. The single photon emitter now operates in this stationary
state. Single photons are emitted out of the cavity. Excitons are created and recombine in
balance. Within the PPCE approach, the full information about the quantized light field
is easily obtained via the photon probability distribution [SRK+10; RCSK09a; MW95]. In
Fig. 4.12(right), the photon probability distribution in the stationary limit is depicted. A
Fock distribution is visible. Only two photon probabilities are inequal to zero. Rabi oscilla-
tions lead to an increase of p1. Prepared in a pure Fock state, the cavity field oscillates only
between two photon probabilities, if only one emitter, e.g. QD, is placed inside the cavity.
Here, the stationary value has a maximum of p0, but enough probability p1 to actually
emit a photon from the cavity. A single photon source needs a small g(2)(t, 0)-function with
a high probability of a photon emission:

〈〈〈
c†c
〉〉〉
. In Fig. 4.12, both conditions are fulfilled.
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Figure 4.12: QD as a single photon emitter, using the parameters M = 0.22 meV, γp =
0.1 meV and κ = 0.018 meV, weakly pumped:Sin = 4ns−1 and the out-scattering is Sout =
0.1Sin.

The photon probability resolved dynamics and results are important to understand quan-
tum light correlation on a fundamental level, e.g. the importance of p2 to find a strongly
anti-bunched cavity field. Physically, this corresponds to negligible induced emission in the
cavity. The electron and hole density is not built up fastly enough. An induced emission
process cannot take place. The next interesting regime is the transient regime for medium
pumping.
In the transient regime, the pump mechanism is fast enough to repopulate the QD before
the cavity photon is reabsorbed and creates an exciton. In Fig. 4.13(left), the observ-
ables of the system is shifted to a higher stationary value due to the stronger pumping:
Sin = 0.1ps−1 and the out-scattering is Sout = 0.1Sin. The electron density (solid, blue
line) is built up faster. The inscattering is stronger and the electron density saturates on

Figure 4.13: QD as a single photon emitter, using the parameters M = 0.22 meV, γp =
0.1 meV and κ = 0.018 meV, pumped in the transition regime.
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Figure 4.14: QD as a single photon emitter, using the parameters M = 0.22 meV, γp =
0.1 meV and κ = 0.018 meV. The electrical pumping is strong. The QD starts to enter the
lasing regime.

a higher stationary value. Due to the higher electron and hole density, more excitons can
recombine on a shorter time scale and a higher photon number is reached with a stationary
value of approximately 0.1. The stationary value is reached faster due to the faster inscat-
tering processes and the additional dephasing, which is introduced in the photon-assisted
polarization. The g(2)(t, 0)-function saturates at a value of 0.55, above the single-photon
level. To understand the transient regime in more detail, the photon probability distribu-
tion is plotted on the right hand side of Fig. 4.13. Here, clearly visible, is the condition of
a single photon emitter not fulfilled. It is highly probable to find a second photon in the
cavity with around 7%. If the goal is a single QD laser, the opposite is to provide, or a
stronger pumping.
A lot of effort is aiming at a single QD laser, a very efficient laser device, operating above
threshold to provide a coherent quantum light emission [MKZ+00]. Conditions for a single
QD laser is a high-Q cavity with a strong electron-light coupling, exceeding the losses to
provide induced emission processes. A β-factor close to 1 is necessary, for maximally quan-
tum exploit efficiency, as well as a fast pump mechanism, e.g. electrical pump mechanism
via a carrier reservoir [KMR+10b]. In Fig. 4.14(left), the dynamics of a single QD laser
is plotted. The increased pump rates Sin = 0.33ps−1 and the out-scattering Sout = 0.1Sin

enforces the electron density (solid, blue line) to saturated very fast within only 5 ps. After
10 ps, electron and photon density cross and the photon density saturates at a stationary
value of approximately 2. On approximately the same time scale, the g(2)(t, 0)-function
reaches the stationary value close to 1, indicating a coherent cavity light field.
Specific for this pumping regime is the order, in which the observables enter into the sta-
tionary regime. For weak and medium pumping, the photon density saturates before the
g(2)(t, 0)-function. But in the strong regime, the g(2)(t, 0)-function saturates fast and before
the photon density at 60 ps. Coherence is reached and cannot be more enforced as it is at
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that point of pumping. In this regime, the Hartree-Fock approximation begins to become
problematic. For high carrier densities, higher order correlation between electrons and holes
need to be taken into account. For much higher pumping rates beyond Sin = 0.33ps−1, the
calculation need to be cross checked with higher order calculations, since the density grow
to higher values than 0.5 and correlations cannot be neglected. Additionally, an adiabatic
switch-on of the pumping mechanism need to be implemented for much higher pumping
rates, since for very strong pumping rates, the instantaneous pumping of the carrier states
in the QD may lead to numerical artefacts. It does not correspond to the slowly increased
injection current into the bulk material, or the tunneling of carriers directly into the carrier
reservor for the QD. In Fig. 4.14(right), the photon probability distribution is depicted.
A Poisson distribution is visible with the maximum at 2 photons, the stationary value,
reached in the time dynamics. Up to 6 photon become probable in the cavity, which con-
verts the initially Fock like squeezed cavity field into a Poisson-distributed coherent field
with a fluctuation around the mean photon number of

√
n̄, leading to laser emission.

Note that in the plots above Fig. 4.12-4.14, signatures of Rabi oscillation are not visible.
Since the QD is initially unpopulated and the losses are too strong, the electron density
does not start to oscillate. The theoretical approach is used in the next section to investi-
gate parameter dependent photon-statistics of the emitted quantum light.

4.5.2 Parameter studies of a single QD laser device

For device optimization, parameter studies are a valuable tool to frame efficient operating
points. In the following, the photon-statistics is calculated for different parameter set. A
chosen parameter, e.g. the cavity loss, is varied, whereas the other parameters are held con-
stant, to investigate the interplay between the different physical processes of gain, emission,
absorption, dephasing and damping. The system is started and evaluated until a stationary
state is reached. The corresponding values are plotted for the varied parameter. Since the
time the stationary state is reached and the values differ strongly, the order of equations
of motion need to be adjusted to the chosen parameter set. This is done by investigating
the photon probabilities

〈〈〈
|n〉〈n|

〉〉〉
to find an Nmax, so that pn = 0 for n ≥ Nmax. This

Nmax depends on the parameter set. However, for every given initial conditions and pa-
rameter an Nmax can be found, bearing in mind that, this Nmax is dynamically located
and used, controlling the validity of the calculation. Note, the theoretical results provides
mean probabilities. So the quantities presented here, represent mean values after enough
repetitions of the experiments. Though data of single experiments can not be analysed
with this methods, in this case quantum jump theories are of particular importance.
The electron-light coupling strength M is crucial, since the time scale of the emission and
absorption processes depends on it. The QD interacts with the cavity photons via M .
The coupling matrix element includes the dipole moment of the QD between valence and
conduction band state, as well as the photon mode and the Purcell factor, determined by
the qualtiy factor of the microcavity [YTC00]. Although κ depends also on the cavity pa-
rameter, the electron - light coupling is independently varied from κ, considering different
dipole moments of the QD in a comparable cavity environment. The dipole moments de-
pends on the size, on the geometry and of the material of the QD, given the respective wave
functions [Sti01]. In Fig. 4.15, the g(2)(t, 0)-function (red line), the photon density (green
line) and the electron density (blue line) are plotted for different electron-light coupling
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Figure 4.15: The single photon emitter in steady state condition over different values of
electron-photon coupling M . Using the parameters κ = 1/(4.3ps), γp = 1/(10ps) and the
scattering rates Se

in = 1/(4ps), Se
out = 1/(40ps), Sh

in = 1/(25ps), Sh
out = 1/(8.3ps), and

β = 1.

strength. A cavity loss of κ = 1/(4.3ps), a pure dephasing of γp = 1/(10ps) are chosen and
scattering rates of Se

in = 1/(4ps), Se
out = 1/(40ps), Sh

in = 1/(25ps), Sh
out = 1/(8.3ps). A

β = 1 is assumed. This parameter set determines the range of values for M , which result
in a change of the stationary value. Beyond this range, M can be varied without changing
the stationary state value, since other processes prevent an efficient photon emission, e.g.
the chosen in- and out-scattering. If the inscattering of electrons is much slower than the
electron-photon coupling strength, the in-scattering is the crucial parameter and a higher
value of the electron-photon interaction does not change the quantum light emission. This
is visible in Fig. 4.15. After a value of M = 0.5 ps−1, the photon density and the electron
density do not change much for higher values for M . The electron-photon coupling strength
exceeds the inscattering rate too much and loses the impact on the stationary value. Only
the g(2)(t, 0)-function is rising slightly afterwards due to the fact, that higher correlations
in the photon field are driven more efficiently with a higher M via spontaneous emission
processes. The electron density f e (blue line) is decreased for stronger electron-photon
coupling: excitons in the QD recombine faster with an increased M . In consequence, the
photon density (green line) rises with increasing M , until the cavity loss comes into play
and stops the continously increment of photons in the cavity, as well as the inscattering
rates of electron and holes. For this set of parameter, the g(2)(t, 0)-function is increasing,
but remains in the single-photon limit, i.e. below a value of 0.5. With given in-scattering
and losses, a single QD laser could not be realized, even with a very high dipole moment.
Other processes prevent the increment of g(2)(t, 0)-function to 1.
Another important parameter is the cavity loss with κ = ω0/Q, defining Q as the quality
factor of the cavity, cf. 3.1.1. On the one hand, it is highly desirable to have an efficient
out-coupling of photons from the cavity, to produce a fast triggered-single-photon source
[LO05]. On the other hand, a very high-Q cavity is desirable with strong electron-light cou-
pling, a high Purcell enhancement to create photons in the desired mode. Hence, one needs
a low and a high cavity loss at the same time. The impact of the cavity loss parameter is
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Figure 4.16: The single photon emitter in steady state condition over different values of
cavity loss κ. Using the parameters M = 1/(2ps), γp = 1/(10ps) and the scattering rates
Se

in = 1/(4ps), Se
out = 1/(40ps), Sh

in = 1/(25ps), Sh
out = 1/(8.3ps), and β is assumed to be

1.

depicted in Fig. 4.16. Obviously, for a high κ, the photon density (green line) is decreased
fast and is vanishingly small for κ beyond 1 ps−1. Also, the g(2)(0)-function (red line) is
decreased due to a damping of higher order correlation in the photon field: the higher the
photon correlation, the higher the losses, cf. Eq. (4.63). Although the photon-statistics of
the cavity field remains in the anti-bunching regime, the mean photon number produced
by the single photon device is for high κ too small, to operate in an efficient way in terms
of a single-photon device. Since κ does not increase the g(2)(t, 0)-function, or changes the
photon-statistics, a very small κ is advantageous for single photon emission on demand.
The g(2)(t, 0)-function decreases only as a result of the vanishing photons in the system.
A quantum correlation effect is not visible and is not expected. The electron density (blue
line) is not changed at all. A small increase of the stationary value of the electron density
is still visible and can be explained with an additional damping of the photon-assisted
densities. For high values of κ, the emission process takes longer and the electron density
f e can be filled slightly longer with the result of an increment in the stationary value of
the electron density.
Concluding the parameter studies, the photon density and the g(2)(t, 0)-function are inves-
tigated for different pump rates and for different detunings ∆ between the QD transition
frequency and the cavity mode in units of ps−1. The β-factor is assumed to be 0.9. Obvi-
ously, the detuning enforces a transition from the strong coupling into the weak regime.
In Fig. 4.17(left), the stationary value of the photon density g(1)(0) for different detuning
and increasing inscattering is plotted. For a detuning ∆ = 1 ps−1 (blue line), in order
of magnitude of the electron-photon coupling strength M = 0.5 ps−1, the mean photon
number depends approximately linearly on the pump rate. With increasing pump rate, the
mean photon number rises also, outrivaling the cavity loss. For a stronger detuning (red
and orange line) with ∆ = 2 ps−1 and ∆ = 3 ps−1, the detuning effect is stronger than
the electron-photon coupling and the mean photon number increases also, but slower. For
an increasing detuning, the emission of photons is less probable, until the emission stops
ultimately, if the detuning is too big and no further feeding mechanisms are considered

98



4 Quantum dot - wetting layer cavity quantum electrodynamics

0 0.2 0.4 0.6

S
in

[ps
-1

]

0

2

4

6

g(1
) (0

)

0 0.2 0.4 0.6

S
in

 [ps
-1

]

0

0.5

1

1.5

2

g(2
) (0

)

  ∆=1
  ∆=2
  ∆=3

Figure 4.17: The single photon emitter in steady state condition over different values of
the inscattering rate Sin and for different detuning ∆ between the cavity mode and the
QD transition energy in units of ps−1. Using the parameters M = 1/(2ps), γp = 1/(10ps)
and β is assumed to be 0.9.

[MKH08; Hoh10; WVT+09; TS10]. On the right hand side of Fig. 4.17, the g(2)(t, 0)-
function in dependence on the pump rate and on the detuning is plotted. In contrast to
the photon density, the detuning has a surprising impact on the g(2)(t, 0)-function. For a
small detuning (blue line), the g(2)(t, 0)-function rises and saturates at a stationary value
of approximately 1. The QD-carrier reservoir system operates in the laser limit well above
threshold. A Poisson-distribution is obtained. But for a higher detuning a remarkable effect
is visible. The g(2)(t, 0)-function does not progress to 1, but overshoots into the bunching
regime, reaches a maximum value and progresses then back to 1 for high pump rates. This
effect is widely discussed in recent experimental and theoretical work and is attributed to
background noise [NKI+10], to a biexciton contribution[RGGJ10] or, like in this case, to a
detuning of the QD-cavity resonance. In the Hartree-Fock limit, higher pump rates become
problematic. The unfactorized correlation between electron-and holes must be negligible.
Here, the investigation is focused on the single-photon limit, not on the laser limit. To
investigate the laser dynamics of a single QD laser in the high pumping limit, it is neces-
sary to go beyond the Hartree-Fock factorization in the similar manner like the SCE. The
possibility of the PPCE to include correlation of higher order is one of its strength and
is in preparation. Remarkable, the bunching transition dynamics is observable within the
Hartree-Fock limit and within the given parameter set.

4.5.3 Atom and QD-WL rate equations in the single-photon limit

The main difference between an atomic model and a QD-carrier reservoir (WL) model stems
from the validity of the one-electron assumption (OEA), which is typically valid in atomic
system. In atomic systems electron and holes are correlated, e.g. via

〈〈〈
a†cac

〉〉〉
+
〈〈〈
a†vav

〉〉〉
= 1

[BY99]. In the atomic limit, the Hartree-Fock is not necessary. Quantities like
〈〈〈
a†ca

†
vavac

〉〉〉

vanish and the spontaneous emission is only driven by the electron density f e =
〈〈〈
a†cac

〉〉〉
.
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Figure 4.18: Photon density g(1)(0) and g(2)(t, 0)-function in a steady state condition over
different values of the inscattering rate Sin in an atomic (OEA) and in a QD-carrier reservoir
system (CR): ∆ = 0.05 ps−1, κ = 0.03 ps−1 M = 1/(5ps), γp = 0.05 ps−1 and β is assumed
to be 0.98 and Sout = 0.1 Sin.

In consequence, the photon-assisted polarization is strongly modified in comparison to
Eq. (4.64) and reads:

∂t

〈〈〈
a†vac|n + 1〉〈n|

〉〉〉
= (−i∆ − γp)

〈〈〈
a†vac|n + 1〉〈n|

〉〉〉
− iM

√
n + 1(f e

n − pn+1 + fh
n+1).(4.66)

The laser rate equations are derived by assuming the polarization dynamics to be stationary
on the emission process time scale. Eq. (4.66) is solved in the adiabatic limit. The time-
derivative is assumed to be zero. With the given equation for the polarization, using the
one-electron assumption and applying second order Born-approximation: f e

n ≈ f e pn, the
PPCE equations Eq. (4.63) - Eq. (4.65) reduce to the well-known laser rate equation for
the photon density [Hak94]:

∂t

〈〈〈
c†c
〉〉〉

= −2κ
〈〈〈
c†c
〉〉〉

+
β

τsp

[〈〈〈
c†c
〉〉〉

+ 1
]

f e (4.67)

with
〈〈〈
c†c
〉〉〉

=
∑

n n pn and to close the set of equations, one obtains for the electron
dynamics with the expression of the microscopic polarization and in second order Born:

∂tf
e = − 1

τsp
f e − β

τsp
f e
〈〈〈
c†c
〉〉〉

+ Sin(1 − f e) − Soutf
e. (4.68)

Given a constant pump rate, dephasing and cavity losses, the observable enter eventu-
ally in the stationary regime, in which the photon density and the g(2)(t, 0)-function can
be compared. In Fig. 4.18, the stationary values of the photon density g(1)(0) (left) and
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the intensity-intensity correlaton g(2)(t, 0)-function (right) is plotted for different in- and
outscattering Sin/out. The parameter set is given in the caption of Fig. 4.18. The cavity dy-
namics are evaluated for a atomic system (orange, dashed line, OEA) and for a QD-carrier
reservoir system (green, solid line,CR). Comparing the stationary values of the photon
density in Fig. 4.18(left), between the atomic and QD-CR-system, the difference is small.
With increasing pump rate, the mean photon number rises gradually. The higher the pump
rate, the faster the mean photon number rises. The atomic system shows a slightly faster
output of photons from a pump rate of Sin = 0.005 ps−1 until Sin = 0.2 ps−1. At this
value, both output curves start to converge again. However, this small difference indicates
a remarkable feature of the QD-CR system, concerning single-photon emission on demand.
Intensity-intensity correlation are surpressed without the lack of photons. The photon den-
sity is almost the same, but not the g(2)(t, 0)-function, cf. Fig. 4.18(right). For the atomic
system and with given parameters, the g(2)(t, 0)-function starts in the anti-bunching regime
at a value of 0.75 and rises gradually with increasing pump rate to the coherent regime
around 1. This indicates, the transition into the laser regime. However, with a similar out-
put curve, the QD-CR system shows a wide range of strongly anti-bunched quantum light
emission. Even for a pump rate of Sin = 0.01 ps−1, the device operates in the single-photon
regime, below a value of 0.5 due to the fact, that the semiconductor specific property, uncor-
related electron and hole densities, lead to an enhanced Pauli-blocking, which in turn leads
to a decreased emission rate into the laser mode. This enhanced Pauli-blocking originates
from the spontaneous emission term: f e

nfh
n/pn, which is in the atomic case only propor-

tional to f e. In typical experimental data [NKI+10], the value of the g(2)(t, 0)-function in a
steady state condition is much lower than theoretical calculations predict. Those numeri-
cal simulations are based on the one-electron assumption and do not include the enhanced
Pauli-blocking due to the presence of the wetting layer. Typical experimental values of
the g(2)(t, 0)-function are well-below 0.5 and thus in the single-photon limit. Within the
PPCE, this strong anti-bunching is enforced by the modified spontaneous emission term,
cf. Fig. 4.18 and agrees better with experimental data [NKI+10].
Being disadvantageous in other regimes (lasing), the single photon emission is enhanced
in this case and only modelled correctly within the PPCE-approach. This proves the im-
portance of microscopical models, which take into account carrier-carrier scattering to
investigate interesting operating conditions for technological applications, and to reveal
advantageous properties within a semiconductor environment.
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5 Conclusion and outlook

This thesis focuses on the single-photon regime of the semiconductor quantum dot-cavity
quantum electrodynamics (QD-CQED) beyond the Jaynes-Cummings model, including
non-Markovian contributions and many-particle interactions such as electron-phonon cou-
pling or enhanced Pauli-blocking on a microscopic level. Two theoretical frameworks are
introduced to provide a simulation tool for parameter studies of single-photon devices: (i)
the mathematical induction model solves the QD-CQED including the electron-LO phonon
interaction up to an arbitrary accuracy in case of a fixed number of electrons in the quan-
tum dot; and (ii) in the presence of a carrier reservoir, the photon-probability cluster
expansion (PPCE) is devoloped and introduces a modified Hartree-Fock factorization.

Within the mathematical induction model, the conversion of a thermal into a non-classical
cavity field with sub-Poissonian statistics has been shown and LO-phonon assisted cav-
ity feeding with additional anti-crossing signatures is discussed. Present anharmonicities
in the Rabi oscillations is attributed to the mixing of Rabi frequencies for elevated tem-
peratures. The modified Rabi frequency is expressed using the Huang-Rhys factor. An
analytical derivation with amplitude modulation is a next step to simplify the LO-phonon
QD-CQED via an effective Hamiltonian approach.

The biexciton cascade is calculated in the strong and weak coupling regime. The polariza-
tion entanglement of the generated photons is theoretically investigated. Via an effective
multi-phonon Hamiltonian approach, a temperature dependent analysis of the degree of
entanglement has been performed. For elevated temperatures (T ≥ 120 K) in GaAs, the
polarization entanglement vanishes due to the presence of the wetting layer. Further in-
vestigations, in particular via the induction method in the strong coupling regime and of
LO-phonon coupling to the QD excitons may reveal other probabilities for an enhanced
degree of entanglement. For example, the LO-phonon sidebands may enforce an erasing
of the which-path information, similiar to the modulation of the exciton and biexciton
energies via external applied electrical fields.

Within the PPCE, an electrically driven single-photon emitter has been studied, includ-
ing enhanced Pauli-blocking in a modified spontaneous emission source term. This many-
particle specific Pauli-blocking is advantageous for generating single photons in a wide
range of the electrical pump strength in comparison to atom-based single photon emitter
devices. To calculate a single-QD laser operating well above threshold, the investigation
needs to go beyond the introduced modified Hartree-Fock limit. As a next step, correction
terms will be included into the calculation to study threshold behavior in the g(2)(t, 0)-
function. Additionally, the electron-phonon interaction has to be included to motivate the
phenomologically introduced pure dephasing microscopically.
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A Appendix

A.1 Weakly driven QDs: equations of motion

In Förster-coupled nanostructures exciton transfer occurs. The equation of motion reads:

∂t

〈〈〈
B1†

mB1
n

〉〉〉
= −i (ωn − ωm − 2iΓ)

〈〈〈
B1†

mB1
n

〉〉〉
(A.1)

−i
(

M̄∗
m,2

〈〈〈
B2†B1

nc
〉〉〉
− M̄n,2

〈〈〈
B1†

mB2c†
〉〉〉

+ M̄m

〈〈〈
G†B1

nc†
〉〉〉
− M̄∗

n

〈〈〈
B1†

mGc
〉〉〉)

.

The electronic densities in Eq. (2.28) - (2.30) couple to photon-assisted polarisations. The
photon-assisted polarisations in the second-order of electron-light coupling read:

∂t

〈〈〈
G†B1

mc†
〉〉〉

= −i (ωm − ω − iΓ)
〈〈〈
G† B1

m c†
〉〉〉

+ i
(

M̄∗
m

〈〈〈
G†Gc†c

〉〉〉
+ M̄m,2

〈〈〈
G†B2c†c†

〉〉〉)

−i
∑

l

M̄∗
l

(〈〈〈
B1†

l B1
m c†c

〉〉〉
+
〈〈〈
B1†

l B1
m

〉〉〉)

, (A.2)

∂t

〈〈〈
B1†

m B2c†
〉〉〉

= −i (ωB − ωm − ω − 3iΓ)
〈〈〈
B1†

m B2 c†
〉〉〉

+ i
∑

l

M̄∗
l,2

〈〈〈
B1†

mB1
l c†c

〉〉〉

−i
(

M̄∗
m,2

〈〈〈
B2†B2c†c

〉〉〉
+ M̄∗

m,2

〈〈〈
B2†B2

〉〉〉)

− iM̄m

〈〈〈
G†B2c†c†

〉〉〉
. (A.3)

This quantity depends strongly on the energy splitting, thus on the Coulomb-parameter.
It oscillates for strong Förster-coupling and is driven by the photon-assisted polarisations,
which couple to photon-assisted exciton-densities:

∂t

〈〈〈
G†G c†c

〉〉〉
= 2Γ

(〈〈〈
B1†

1 B1
1c†c

〉〉〉
+
〈〈〈
B1†

2 B1
2c†c

〉〉〉)

− 2
∑

m

Im
(

M̄m

〈〈〈
G†B1

m c†
〉〉〉)

−2
∑

m

Im
(

M̄m

〈〈〈
G†B1

mc†c†c
〉〉〉)

, (A.4)

∂t

〈〈〈
B2†B2c†c

〉〉〉
= −4Γ

〈〈〈
B2†B2c†c

〉〉〉
+ 2

∑

m

Im
(

M̄m,2

〈〈〈
B1†

m B2c†c†c
〉〉〉)

, (A.5)

∂t

〈〈〈
B1†

mB1
nc†c

〉〉〉
= −i(ω1

n − ω1
m − 2iΓ)

〈〈〈
B1†

m B1
nc†c

〉〉〉

−i
(

M̄m

〈〈〈
G†B1

nc†c†c
〉〉〉
− M̄∗

n

〈〈〈
B1†

m Gc†cc
〉〉〉)

−i
(

M̄∗
m,2

〈〈〈
B2†B1

nc†cc
〉〉〉
− M̄n,2

〈〈〈
B1†

m B2c†c†c
〉〉〉)

−i
(

M̄∗
m,2

〈〈〈
B2†B1

nc
〉〉〉
− M̄n,2

〈〈〈
B1†

m B2c†
〉〉〉)

. (A.6)
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These photon-assisted exciton densities decay with the Einstein-coefficient Γ, exactly like
the exciton densities. The third order in the electron-light coupling element M̄m couples
to the fourth order, which as well includes the two-photon polarisation:

∂t

〈〈〈
G†B2c†c†

〉〉〉
= −i (ωB − 2ω − 2iΓ)

〈〈〈
G†B2c†c†

〉〉〉
+ i
∑

m

M̄∗
m,2

〈〈〈
G†B1

m c†c†c
〉〉〉

(A.7)

−i
∑

m

M̄∗
m

(

2
〈〈〈
B1†

m B2c†
〉〉〉

+
〈〈〈
B1†

m B2c†c†c
〉〉〉)

.

The two-photon polarisation opens two additional channels to excite a biexciton in the
coupled system. Due to this quantity, which influences the quantitative results strongly, a
simple analytical solution cannot be derived.

∂t

〈〈〈
G†B1

nc†c†c
〉〉〉

= −i
(
ω1

n − ω − iΓ
) 〈〈〈

G†B1
mc†c†c

〉〉〉
− 2i

∑

l

M̄∗
l

〈〈〈
B1†

l B1
nc†c

〉〉〉

−i
∑

l

M̄∗
l

〈〈〈
B1†

l B1
nc†c†cc

〉〉〉
− iM̄∗

n

〈〈〈
G†Gc†c†cc

〉〉〉

+iM̄n,2

〈〈〈
G†B2c†c†c†c

〉〉〉
+ iM̄n,2

〈〈〈
G†B2c†c†

〉〉〉
, (A.8)

∂t

〈〈〈
B1†

mB2c†c†c
〉〉〉

= −i
(
ω2 − ω1

m − ω − 3iΓ
)〈〈〈

B1†
m B2c†c†c

〉〉〉
− 2i M̄∗

m,2

〈〈〈
B2†B2c†c

〉〉〉

−i M̄∗
m,2

〈〈〈
B2†B2c†c†cc

〉〉〉
+ i
∑

l

M̄∗
l,2

〈〈〈
B1†

mB1
l c†c†cc

〉〉〉

−iM̄m

〈〈〈
G†B2c†c†c†c

〉〉〉
. (A.9)

Now, the set of equations of motions is given to calculate two Coulomb coupled QDs in
the weak coupling regime.

A.2 Numerical parameters

Parameter Symbol Value
electron mass m0 5.6856800 fs2eV nm−2

electron effective mass me 0.043m0 [R0̈2]
hole effective mass mh 0.450m0 [R0̈2]
LO phonon energy ~ωLO 36.4 meV [R0̈2]
QD band gap ~ωcv 1.5 eV
Electron confinement energy ~ωel 50 meV
Hole confinement energy ~ωh 25 meV

QD diameter l =
√

~2ln2
m∗

em0~ωel
15,77 nm

High frequency dielectric constant ǫ∞ 10.9
Static dielectric constant ǫstat 12.53
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A.3 Biexciton cascade in the strong coupling regime:
Equations of motions

Phenomenologically, the cavity loss is introduced κ, cf. Sec. 3.1.2. Since the two-electron
assumption holds, the biexciton couples only to energetic lower states, such as the inter-
mediate exciton states via the corresponding transitions:

∂t

〈〈〈
X†

HBHm,nV p,q
〉〉〉

(A.10)

= i
[
(m − n)ω0

H + (p − q)ω0
V + ωH − ωB + iκ(m + n + p + q)

]〈〈〈
X†

HBHm,nV p,q
〉〉〉

− iM
〈〈〈
G†BHm+1,nV p,q

〉〉〉
− iM m

〈〈〈
B†BHm−1,nV p,q

〉〉〉

− iM
〈〈〈
B†BHm,n+1V p,q

〉〉〉
+ iM

〈〈〈
X†

HXHHm,n+1V p,q
〉〉〉
− iM

〈〈〈
X†

HXV Hm,n+1V p,q+1
〉〉〉

∂t

〈〈〈
X†

V BHm,nV p,q
〉〉〉

(A.11)

= i
[
(m − n)ω0

H + (p − q)ω0
V + ωV − ωB + iκ(m + n + p + q)

]〈〈〈
X†

V BHm,nV p,q
〉〉〉

− iM
〈〈〈
G†BHm,nV p+1,q

〉〉〉
+ iM p

〈〈〈
B†BHm,nV p−1,q

〉〉〉

+ iM
〈〈〈
B†BHm,nV p,q+1

〉〉〉
+ iM

〈〈〈
X†

V XHHm,n+1V p,q
〉〉〉
− iM

〈〈〈
X†

V XV Hm,nV p,q+1
〉〉〉

In the photon-assisted exciton-biexciton transition is driven via the spontaneous emission
due to the biexciton relaxation. Either a horizontal or vertical photon is emitted. Note,
the frequency ω

H/V
0 originates from the cavity frequency and must not be in resonance

with transition energy ωH/V −ωB. The spontaneous emission process is crucial in the weak
coupling regime. In the strong coupled dynamics, the exciton-biexciton transition is also
driven by the photon-assisted exciton density:

∂t

〈〈〈
X†

HXHHm,nV p,q
〉〉〉

(A.12)

= i
[
(m − n)ω0

H + (p − q)ω0
V + iκ(m + n + p + q)

]〈〈〈
X†

HXHHm,nV p,q
〉〉〉

− iM
〈〈〈
G†XHHm+1,nV p,q

〉〉〉
− iM m

〈〈〈
B†XHHm−1,nV p,q

〉〉〉
− iM

〈〈〈
B†XHHm,n+1V p,q

〉〉〉

+ iM
〈〈〈
X†

HGHm,n+1V p,q
〉〉〉

+ iM n
〈〈〈
X†

HBHm,n−1V p,q
〉〉〉

+ iM
〈〈〈
X†

HBHm+1,nV p,q
〉〉〉

∂t

〈〈〈
X†

V XV Hm,nV p,q
〉〉〉

(A.13)

= i
[
(m − n)ω0

H + (p − q)ω0
V + iκ(m + n + p + q)

]〈〈〈
X†

V XV Hm,nV p,q
〉〉〉

− iM
〈〈〈
G†XV V

p+1,q
〉〉〉

+ iM p
〈〈〈
B†XV Hm,nV p−1,q

〉〉〉
+ iM

〈〈〈
B†XV V

p,q+1
〉〉〉

+ iM
〈〈〈
G†XV Hm,nV p,q+1

〉〉〉
− iM q

〈〈〈
X†

V BHm,nV p,q−1
〉〉〉
− iM

〈〈〈
X†

V BHm,nV p+1,q
〉〉〉
.

The photon-assisted intermediate exciton densities couple to the higher electronic levels
via the transition to the biexciton and to the lower electronic level via the transition to
the ground state. Due to spontaneous emission processes, the exciton densities are driven
stronger by the biexciton transition than by the ground state transition. The exciton-
exciton transition (X†

HXV ) has a significant impact on the exciton dynamics, if the two
intermediate exciton levels are energetically close. This exchange of excitation energy is
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of great importance for the degree of entanglement, since in this quantity the relaxation
paths are crossing over.

∂t

〈〈〈
X†

V XHHm,nV p,q
〉〉〉

(A.14)

= i
[
(m − n)ω0

H + (p − q)ω0
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X†
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+ iM
〈〈〈
X†

V BHm+1,nV p,q
〉〉〉

The smaller the fine structure splitting, the more is this exciton-exciton transition density
like and is driven strongly by the photon-assisted polarization. Due to this quantity, it
is possible that vertical polarized photons are emitted in a biexciton cascade, which is
driven only by horizontal polarized photons. The horizontal polarized photon density can
be converted completely into vertical polarized photons, if the energy splitting between the
intermediate exciton levels is smaller than the cavity loss, i.e. some µeV. The conversion is
driven by the ground to exciton state transitions:

∂t

〈〈〈
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〈〈〈
G†BHm,nV p+1,q

〉〉〉

The ground to exciton transition is formally equivalent to the exciton to biexciton transi-
tion. It includes spontaneous emission processes, induced absorption and emission via the
phase filling factor, or photon-assisted inversion [SZ97]. Two new quantities appear, the
photon-assisted ground state density and the ground to biexciton state transition (

〈〈〈
G†B

〉〉〉
),

which is another crucial and characteristic quantity in the four-level exciton dynamics.

∂t

〈〈〈
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〉〉〉
(A.17)

= i
[
(m − n)ω0

H + (p − q)ω0
V − ωB + iκ(m + n + p + q)
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− iM p
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〉〉〉
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〉〉〉

+ iM
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G†XHHm,n+1V p,q

〉〉〉

The ground to biexciton transition does not couple the biexciton to the ground state
density, but the exciton-biexciton to the ground to exciton transitions and is formally
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equivalent to the exciton-exciton transition. Due to this transition, the relaxation path can
also interfere. Finally, the ground state density reads:

∂t

〈〈〈
G†GHm,nV p,q

〉〉〉
(A.18)

= i
[
(m − n)ω0

H + (p − q)ω0
V + iκ(m + n + p + q)

]〈〈〈
G†GHm,nV p,q

〉〉〉

− iM m
〈〈〈
X†

HGHm−1,nV p,q
〉〉〉
− iM

〈〈〈
X†

HGHm,n+1V p,q
〉〉〉
− iM p

〈〈〈
X†

V GHm,nV p−1,q
〉〉〉

− iM
〈〈〈
X†

V GHm,nV p,q+1
〉〉〉

+ iM n
〈〈〈
G†XHHm,n−1V p,q

〉〉〉
+ iM

〈〈〈
G†XHHm+1,nV p,q

〉〉〉

+ iM q
〈〈〈
G†XV Hm,nV p,q−1

〉〉〉
+ iM

〈〈〈
G†XV Hm,nV p+1,q

〉〉〉

The ground state is populated by all relaxation processes as the energetic lowest electronic
state. The ground state to horizontal exciton state transition reads:

∂t

〈〈〈
G†XHHm,nV p,q

〉〉〉
(A.19)

= i
[
(m − n)ω0

H + (p − q)ω0
V − ωH + iκ(m + n + p + q)

]〈〈〈
G†XHHm,nV p,q

〉〉〉

− iM m
〈〈〈
X†

HXHHm−1,nV p,q
〉〉〉
− iM

〈〈〈
X†

HXHHm,n+1V p,q
〉〉〉

− iM p
〈〈〈
X†

V XHHm,nV p−1,q
〉〉〉

+ iM
〈〈〈
G†GHm,n+1V p,q

〉〉〉
+ iM n

〈〈〈
G†BHm,n−1V p,q

〉〉〉

− iM
〈〈〈
X†

V XHHm,nV p,q+1
〉〉〉

+ iM
〈〈〈
G†BHm+1,nV p,q

〉〉〉
.

The ground to exciton transition is formally equivalent to the exciton to biexciton transition

A.4 Biexciton cascade in the weak coupling regime:
Equations of motions

The equation of motion of a biexciton cascade in the weak coupling regime differ from the
strong copuling regime in the number of photon operators, which are taken into account.
The temporal evolution of the driving terms in Eq. (3.62) is given by

∂t

〈〈〈
G†XHc†V c†V cH

〉〉〉
= i

(
−ωH + 2ωV

0 − ωH
0 + iΓ + 3iκ

)〈〈〈
G†XHc†V c†V cH

〉〉〉
(A.20)

− 2iM
〈〈〈
X†

V XHc†V cH

〉〉〉
+ iM

〈〈〈
G†Bc†V c†V

〉〉〉

and

∂t

〈〈〈
X†

V G c†V cHcH

〉〉〉
= i

(
ωV + ωV

0 − 2ωH
0 + iΓ + 3iκ

)〈〈〈
X†

V G c†V cHcH

〉〉〉
(A.21)

+ 2iM
〈〈〈
X†

V XHc†V cH

〉〉〉
+ iM

〈〈〈
B†G cHcH

〉〉〉
.

The driving terms of the two-photon density matrix in turn couple to combined exciton-
and photon coherences X†

V XHc†V cH and to the direct decay channel from B†B to G†G

emitting two photons with the same polarization G†Bc†V c†V . Crucial for entangling the two
decay paths is the exciton-exciton transition, assisted by a photon coherence:

∂t

〈〈〈
X†

V XHc†V cH

〉〉〉
= i

(
ωV − ωH + ωV

0 − ωH
0 + 2iΓ + 2iκ

)〈〈〈
X†

V XHc†V cH

〉〉〉

− iM
〈〈〈
G†XHc†V c†V cH

〉〉〉
+ iM

〈〈〈
B†XHcH

〉〉〉

+ iM
〈〈〈
X†

V G c†V cHcH

〉〉〉
+ iM

〈〈〈
X†

V Bc†V
〉〉〉
. (A.22)

v



A Appendix

In this equation, the two paths interfere. The influence in the two-particle correlation
〈〈〈
X†

V XHc†V cH

〉〉〉
increases the degree of entanglement as this term couples back to the driving

terms of ρV H , Eq. (A.20) and (A.21). Here again the resonance condition of the frequencies
is essential (ωV − ωH = ωV

0 − ωH
0 = δ): A high detuning δ will diminish the contribution

of Eq. (A.22) to the cascade and both paths cannot interfere. The other characteristic
and important quantity in the two-electron biexciton-cascade situation are the two-photon
polarizations

∂t

〈〈〈
G†Bc†V c†V

〉〉〉
= i

(
−ωB + 2ωV

0 + 2iΓ + 2iκ
)〈〈〈

G†Bc†V c†V
〉〉〉

(A.23)

+ iM
〈〈〈
G†XHc†V c†V cH

〉〉〉
− iM

〈〈〈
G†XV c†V c†V cV

〉〉〉
− 2iM

〈〈〈
X†

V Bc†V
〉〉〉

and

∂t

〈〈〈
B†G cHcH

〉〉〉
= i

(
ωB − 2ωH

0 + 2iΓ + 2iκ
)〈〈〈

B†G cHcH

〉〉〉
(A.24)

− iM
〈〈〈
X†

HG c†HcHcH

〉〉〉
+ iM

〈〈〈
X†

V G c†V cHcH

〉〉〉
+ 2iM

〈〈〈
B†XHcH

〉〉〉
.

Each path in the cascade has one biexciton-to-ground state transition like G†Bc†V c†V . Its

dynamics couples the biexciton-to-exciton transition X†
V Bc†V with both exciton-to-ground

state transitions G†Xi. Remarkably, the origin of the entanglement is directly visible,
since a quantity of a different path enters in Eq. (A.23):

〈〈〈
G†XHc†V c†V cH

〉〉〉
. Here again, the

two paths interfere. For maximum entanglement the contributions of the different paths
G†XH and G†XV to the expectation values should be equally weighted. The photon-
assisted biexciton-to-exciton transition enters in the two-photon polarization and drives
this quantity via the biexciton decay:

∂t

〈〈〈
B†XHcH

〉〉〉
= i

(
ωB − ωH − ωH

0 + 3iΓ + iκ
)〈〈〈

B†XHcH

〉〉〉
+ iM

〈〈〈
B†B

〉〉〉
(A.25)

− iM
〈〈〈
X†

HXHc†HcH

〉〉〉
+ iM

〈〈〈
X†

V XHc†V cH

〉〉〉
+ iM

〈〈〈
B†G cHcH

〉〉〉
,

∂t

〈〈〈
X†

V Bc†V
〉〉〉

= i
(
−ωB + ωV + ωV

0 + 3iΓ + iκ
)〈〈〈

X†
V Bc†V

〉〉〉
+ iM

〈〈〈
B†B

〉〉〉
(A.26)

− iM
〈〈〈
G†Bc†V c†V

〉〉〉
+ iM

〈〈〈
X†

V XHc†V cH

〉〉〉
− iM

〈〈〈
X†

V XV c†V cV

〉〉〉
.

The occurring biexciton as well as the intermediate exciton-photon densities are driven by
the biexciton-exciton transition

〈〈〈
X†

i Bc†i
〉〉〉
:

∂t

〈〈〈
X†

HXHc†HcH

〉〉〉
= − (2Γ + 2κ)

〈〈〈
X†

HXHc†HcH

〉〉〉
(A.27)

− 2 Im
(

M
〈〈〈
X†

HBc†H
〉〉〉

+ M
〈〈〈
X†

HG c†HcHcH

〉〉〉)

,

∂t

〈〈〈
X†

V X†
V c†V cV

〉〉〉
= − (2Γ + 2κ)

〈〈〈
X†

V X†
V c†V cV

〉〉〉
(A.28)

+ 2 Im
(

M
〈〈〈
X†

V Bc†V
〉〉〉
− M

〈〈〈
X†

V G c†V cV cV

〉〉〉)

.

In the visualization of the complex interplay, it is a bottom-to-top trail followed through
the cascade, starting with the concurrence determining ρV H . The biexciton

〈〈〈
B†B

〉〉〉
as the
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top element of the scheme decays via the H or the V intermediate exciton-to-ground-state
path

∂t

〈〈〈
B†B

〉〉〉
= −4Γ

〈〈〈
B†B

〉〉〉
+ 2 Im

(

M
〈〈〈
X†

HBc†H
〉〉〉
− M

〈〈〈
X†

V Bc†V
〉〉〉)

. (A.29)

To complete the set of equation, two higher-order photon-assisted exciton-to-ground state
transitions of the direct and thus not entangled path are necessary:

∂t

〈〈〈
G†XHc†Hc†HcH

〉〉〉
= i

(
−ωH + ωH

0 + iΓ + 3iκ
)〈〈〈

G†XHc†Hc†HcH

〉〉〉
(A.30)

− 2iM
〈〈〈
X†

HXHc†HcH

〉〉〉
+ iM

〈〈〈
G†Bc†Hc†H

〉〉〉
,

∂t

〈〈〈
G†XV c†V c†V cV

〉〉〉
= i

(
−ωV + ωV

0 + iΓ + 3iκ
)〈〈〈

G†XV c†V c†V cV

〉〉〉
(A.31)

− 2iM
〈〈〈
X†

V XV c†V cV

〉〉〉
− iM

〈〈〈
G†Bc†V c†V

〉〉〉
.

With these polarization Eq. (A.30-A.31), the diagonal elements i = H,V of the density
matrix of the polarization subspace are given, too:

∂t

〈〈〈
c†i c

†
i ci ci

〉〉〉
= −4κ

〈〈〈
c†i c

†
ici ci

〉〉〉
− 4 Im

(

M
〈〈〈
G†X†

i c
†
i c

†
i ci

〉〉〉)

. (A.32)

A.5 Derivation of the Hartree-Fock factorization

To close the set of differential equations, one needs to factorize the expectation values at a
given level, e.g. on a Hartree-Fock level:

〈〈〈
a†ia

†
jakal

〉〉〉
≈
〈〈〈
a†ial

〉〉〉〈〈〈
a†jak

〉〉〉
−
〈〈〈
a†iak

〉〉〉〈〈〈
a†jal

〉〉〉
. This

factorization rule is derived via the approximation, that the electron-electron correlations
can be expressed as a general canonical statistical operator (GCSO), including only single
particle contributions.[Fri96; FS90] That is: the single particle dynamics is described in a
mean field, induced by the other particles. The GCSO reads:

ρ ≈ ρHF =
1

Z
e−

P

ij λij a†
i aj , Z = tr(e−

P

ij λij a†
i aj ), (A.33)

with the partition function as a normalization to secure tr(ρ) = 1 and a
(†)
i fermionic

operators with [a†i , aj ]+ = δij and a†ia
†
j = −a†ja

†
i . Now, one introduces a unitary matrix φ

to diagonalize, so that λD = φλφ∗, which exist as long as HHF =
∑

ij λij a†iaj consists of
observables, i.e. HHF is hermitian. The matrix element reads:

λij =
∑

mn

φ∗
inλD

nmφmj =
∑

n

φ∗
inλD

nnφnj. (A.34)

The GCSO can now be written in this new basis and is diagonal:

ρHF =
1

Z
e−

P

n λD
nn d†ndn , (A.35)

with the new operators

d(†)
n =

∑

i

φ
(∗)
in a

(†)
i , (A.36)
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inheriting the fermionic character. The partition function can be calculated, given a com-
plete set of eigenfunction of the new operators:

|ΨN 〉 := |n1, n2, n3, ..., nN 〉 = d†1d
†
2 · · · d

†
N |0〉 = −|n2, n1, n3, ..., nN 〉. (A.37)

With this definition, one can calculate with Pi the number of necessary anti-commutations
to bring the state i to the front:

d†idi |ΨN 〉 = d†idi (−1)Pi |ni, n1, ..., ni−1, ni+1, ..., nN 〉 = ni

[
(−1)Pi

]2 |ΨN 〉 = ni|ΨN 〉.(A.38)

The trace is the summation of every state, which can be occupied ni = 1 or be unoccupied
ni = 0, taken into account Pauli’s principle. The trace of the diagonalized operator reads:

Z =
∑

{ni}

〈ΨN |e−
P

n λD
nn d†ndn |ΨN 〉 =

1∑

n1=0

1∑

n2=0

· · ·
1∑

nN=0

〈ΨN |e−
P

n λD
nn d†ndn |ΨN 〉(A.39)

=
1∑

n1=0

1∑

n2=0

· · ·
1∑

nN=0

〈ΨN |e−
PN−1

n=1 λD
nn d†ndn |ΨN 〉e−λD

NN nN

=
1∑

n1=0

1∑

n2=0

· · ·
1∑

nN=0

e−λD
11 n1e−λD

22 n2 · · · e−λD
NN nN

= (1 + e−λD
11)(1 + e−λD

22) · · · (1 + e−λD
NN ) = Πk(1 + e−λD

kk).

Now, the GCSO is explicitly given and one can calculate on a Hartree-Fock level the
expectation value of the electron-electron correlations. The approximation is done in the
choice of the GCSO, in which the observables of interest are included, here single particle
contribution.

〈〈〈
a†ia

†
jakal

〉〉〉
= tr(a†ia

†
jakal ρ) ≈

∑

abcd

φaiφbjφ
∗
kcφ

∗
ldtr(ρHF d†ad

†
bdcdd). (A.40)

The trace must now be taken into account, for that, one investigates:

d†ad
†
bdcdd|nd, nc, ..., nN 〉 =

√
nc nd〈nc, nd, ...nN |d†ad†b|nd − 1, nc − 1, ..., nN 〉 (A.41)

Summing over b results only in two contributions, since the states are orthogonal:

d†ad
†
bdcdd|ΨN 〉 =

√
ndnc d†a|nd − 1, nc, ..., nN 〉δb,c (A.42)

+nd
√

nc d†a|nd, nc − 1, ..., nN 〉δb,d

= nd nc |ΨN 〉 (δa,dδb,c − δa,cδb,d) .
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Now, the expectation value can be calculated:

〈〈〈
a†ia

†
jakal

〉〉〉
≈

∑

{ni}

∑

abcd

φaiφbjφ
∗
kcφ

∗
ld〈ΨN |ρHF d†ad

†
bdcdd|ΨN 〉 (A.43)

=
∑

cd

∑

{ni}

nc nd 〈ΨN |ρHF |ΨN 〉
(
φdiφcjφ

∗
kcφ

∗
ld − φciφdjφ

∗
kcφ

∗
ld

)

=
∑

cd

1∑

nc,nd=0

[

nc e−λD
ccnc

(1 + e−λD
cc)

] [

nd e−λD
dd

nd

(1 + e−λD
dd)

]

(
φdiφcjφ

∗
kcφ

∗
ld − φciφdjφ

∗
kcφ

∗
ld

)

=
∑

cd

[

φdie
−λD

ccφ∗
ld

(1 + e−λD
cc)

][

φcje
−λD

ddφ∗
kc

(1 + e−λD
dd)

]

−
[

φdje
−λD

ccφ∗
ld

(1 + e−λD
cc)

][

φcie
−λD

ddφ∗
kc

(1 + e−λD
dd)

]

=
〈〈〈
a†ial

〉〉〉〈〈〈
a†jak

〉〉〉
−
〈〈〈
a†iak

〉〉〉〈〈〈
a†jal

〉〉〉
.

After choosing the Hartree-Fock GCSO, the calculation leads to automatically to the fac-
torization.

A.6 Photon probability picture

In Eq. (4.14) a new form of the phase-filling factor is derived. The spontaneous emission and
induced emission is included in the quantity

〈〈〈
a†cac|n〉〈n|

〉〉〉
, whereas the induced absorption

is included in
〈〈〈
a†vav|n + 1〉〈n + 1|

〉〉〉
. To see that, one can transform Eq. (4.14) back into

the photon operator picture. E.g., one sums over n after multiplying by
√

n + 1, keeping
in mind the annihilation and creation operator relations:

c†|n〉 =
√

n + 1 |n + 1〉 ≡ 〈n|c = 〈n + 1|
√

n + 1, (A.44)

c |n〉 =
√

n |n − 1〉 ≡ 〈n|c† = 〈n − 1|
√

n. (A.45)

With that, one transforms the equation of the photon-assisted polarization part by part
back:

∑

n

√
n + 1

〈〈〈
a†vac|n + 1〉〈n|

〉〉〉
=
∑

n

〈〈〈
a†vacc

†|n〉〈n|
〉〉〉

=
〈〈〈
a†vacc

†

(
∑

n

|n〉〈n|
)

〉〉〉
=
〈〈〈
a†vacc

†
〉〉〉
.

The inhomogeneity in Eq. (4.14), are already multiplied by
√

n + 1, so we have:

∑

n

(n + 1)
〈〈〈
a†cac|n〉〈n|

〉〉〉
=

∑

n

〈〈〈
a†cac|n〉〈n|

〉〉〉
+ n
〈〈〈
a†cac|n〉〈n|

〉〉〉
(A.46)

=
〈〈〈
a†cac

〉〉〉
+
∑

n

〈〈〈
a†cacc

†c|n〉〈n|
〉〉〉

=
〈〈〈
a†cac

〉〉〉
+
〈〈〈
a†cacc

†c
〉〉〉

and
∑

n

(n + 1)
〈〈〈
a†vav|n + 1〉〈n + 1|

〉〉〉
=

∑

n

〈〈〈
a†vavc

†|n〉〈n|c
〉〉〉

=
〈〈〈
a†vavc

†c
〉〉〉
. (A.47)
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We come up with the photon-assisted polarization, in the second order of the electron-light
coupling in its known form:

∂t

〈〈〈
a†vacc

†
〉〉〉

= −i(ωcv − ω0)
〈〈〈
a†vacc

†
〉〉〉
− i M

(〈〈〈
a†cac

〉〉〉
+
〈〈〈
a†cacc

†c
〉〉〉
−
〈〈〈
a†vavc

†c
〉〉〉)

, (A.48)

and now the spontaneous emission term, proportional to the excited state density, and
induced absorption and emission in the phase-filling factor. Remarkable, in dependence
on the factor one multiplies the equation, one automatically derives different order in the
electron-photon coupling element. As an example, we investigate the photon probability
〈〈〈
|n〉〈n|

〉〉〉
:

∑

n

n
〈〈〈
|n〉〈n|

〉〉〉
=

〈〈〈
c†c
〉〉〉

(A.49)

∑

n

n (n − 1)
〈〈〈
|n〉〈n|

〉〉〉
=

〈〈〈
c†c†cc

〉〉〉
. (A.50)

This works for every expectation value. Thus, one needs for the whole dynamics in arbri-
trary orders only four equations of motions.

A.7 Jaynes-Cummings solution in the photon probability
picture

In the one-electron assumption without losses and other interactions, the exact solution is
given by the JCM. In case of the vacuum Rabi oscillation, i.e. zero photons in the cavity and
a initially excited two-level system, the photon density reads: 〈c†c〉(t) = sin2(M t).[JC63]
We start by showing that the PPCE reproduces this solution. In the one-electron case, the
photon-assisted polarization reads for ωcv − ω0 = 0:

∂t〈|n + 1〉〈n|a†vac〉 = +i M
√

n + 1(pn+1 − fh
n+1) − i M

√
n + 1f e

n. (A.51)

Here, we use the electron-hole picture. Note, the n-quantity considers spontaneous emission,
since the dynamics couple to a lower photon probability in comparison to the photon-
assisted polarization and in contrast to the n+1-quantities. The equation of motion for the
photon-assisted electron and hole densities couple again to the photon-assisted polarization:

∂tf
e/h
n = 2

√
n + 1Im(M

〈
|n + 1〉〈n|a†vac

〉
). (A.52)

For fixed initial conditions, without environment coupling, the set of equations [Eq. (A.51)
and A.52] can be solved analytically, e.g. in the case of vacuum Rabi oscillation. The initial
conditions are: f e

0 = fh
0 = 1, p0 = 1, p1 = 0. This solution is obtained by differentiating Eq.

(A.52) for n = 0 and (4.13) for n = 1 with respect to time:

∂2
t f

e/h
0 = 2Im(M ∂t

〈
|1〉〈0|a†vac

〉
) = −∂2

t p1. (A.53)
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This is valid, as long, as higher order photon assisted polarization are not driven, i.e.
〈〈〈
a†vac|n + 1〉〈n|

〉〉〉
for n > 0. Investing the next higher photon assisted polarization n = 1:

∂t

〈〈〈
|2〉〈1|a†vac

〉〉〉
= +i M

√
2(p2 − fh

2 ) − i M
√

2f e
1 , (A.54)

which is initially zero. To start the dynamics, one of the inhomogeneties must be inequal
to zero at least at one time. f e

1 is initially zero and couples back to
〈〈〈
|2〉〈1|a†vac

〉〉〉
and

cannot start the dynamics; the same for fh
2 , which couples to a even higher photon assisted

polarization and is initially zero as well. At last, p2 needs to be investigated. Since there
is initially zero photons in the cavity, and there is only one excitation in the system, it
is physically impossible to come up with a probability for two photons, in the rotating
wave assumption and considering a band gap of the quantum dot of at least order of
magnitude eV . Time and energy uncertainty forbids an existence of an photon longer than
a tenth of a femtosecond. But it is also mathematically clear, p2 couples to the photon-
assisted polarization of

〈〈〈
|3〉〈2|a†vac

〉〉〉
, which gives clearly no contribution, and couples back

to
〈〈〈
|2〉〈1|a†vac

〉〉〉
. As long as initially p2 is zero, higher photon assisted polarization can be

neglected and Eq. (A.53) is valid and the photon assisted polarization of n = 0 reads:

∂t

〈〈〈
|1〉〈0|a†vac

〉〉〉
= +i M (p1 − f e

0 ), (A.55)

since fh
1 is not driven and initially zero, it couples to Eq. (A.54). Obviously, it is now

convenient, to investigate the dynamics of the difference between the electron density of
n0 and the photon probability of n = 1, this

∂2
t (f e

0 − p1) = 2Im(M ∂t

〈
|1〉〈0|a†vac

〉
) − ∂2

t p1 (A.56)

= 4Im(M ∂t

〈〈〈
|1〉〈0|a†vac

〉〉〉
)

After inserting the photon-assisted polarization for n = 0 from Eq. (A.51), the set of
equations of motions is closed, since all other quantities in higher photon manifolds are
not driven with given initial conditions:

∂2
t (f e

0 − p1) = − (2M)2 (f e
0 − p1) . (A.57)

The solution reads f e
0 (t)− p1(t) = cos (2M t) = cos2 (M t)− sin2 (M t). Since f e

0 (t = 0) =
1, one identifies f e

0 (t) = cos2 (M t) and p1(t) = sin2 (M t). With the initial conditions, the
photon density depends only on p1 and p0 and reads:

〈c†c〉(t) = = 0 · p0 + 1 · p1 = p1(t) = sin2 (M t) , (A.58)

the JCM solution is reproduced. The oscillation frequency depends on the number of
photons in the cavity and the off-diagonal light coupling Mvc, forming together the Rabi
frequency [JC63]. Thus, the JCM is naturally contained in the PPCE-approach.[RCSK09a]
Another benchmark is to include the photon-statistics via initial conditions like in the JCM,
which is done in the next subsection.
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A.8 Modified photon-assisted polarization (electron picture)

The photon-assisted polarization reads in the electron picture:

∂t

〈〈〈
a†vac|n + 1〉〈n|

〉〉〉
(A.59)

= −i(ωcv − ω0)
〈〈〈
a†vac|n + 1〉〈n|

〉〉〉

+ i M
√

n + 1
〈〈〈
a†vav|n + 1〉〈n + 1|

〉〉〉
(

1 − 1

pn+1

〈〈〈
a†cac|n + 1〉〈n + 1|

〉〉〉
)

− i M
√

n + 1
〈〈〈
a†cac|n〉〈n|

〉〉〉
(

1 − 1

pn

〈〈〈
a†vav|n〉〈n|

〉〉〉
)

.

A.9 Cavity loss in the photon probability picture

The coupling of the cavity modes to the external modes is decribed by an additional part
in the Hamiltonoperator,[VWW01] which reads together with the homogenous part of the
external photons:

Hpt−pt = ~

∑

q

ωqd
†
qdq + ~

∑

q

Gq(c
† + c )(d†q + dq), (A.60)

The probability of the tunneling process from the cavity into the environment is determined
by the strength of the coupling element Gq of the mode q. For the cavity loss external pho-
ton modes described by dq,d

†
q. Only contributions within the rotating-wave approximation

are considered. The dynamics, calculated only for the photon-photon interaction reads for
an arbitrary QD operator A assisted by |n〉〈m| cavity photons:

∂t

〈〈〈
A|n〉〈m|

〉〉〉
|pt−pt = i(n − m)ω0

〈〈〈
A|n〉〈m|

〉〉〉
(A.61)

+i
∑

q

Gq

(√
n + 1

〈〈〈
A|n + 1〉〈m|dq

〉〉〉
+

√
n
〈〈〈
A|n − 1〉〈m|d†q

〉〉〉)

+i
∑

q

Gq

(√
m + 1

〈〈〈
A|n〉〈m + 1|d†q

〉〉〉
+

√
m
〈〈〈
A|n〉〈m − 1|dq

〉〉〉)

.

Now, a rotating frame is used:

〈〈〈
A|n〉〈m|

〉〉〉
=

〈〈〈
A|n〉〈m|

〉〉〉

R ei(m−n)ω0 t (A.62)
〈〈〈
A|n〉〈m|dq

〉〉〉
=

〈〈〈
A|n〉〈m|dq

〉〉〉

R ei((m−n)ω0−ωq)t (A.63)
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Now, the free part is changed into a phase-factor:

∂t

〈〈〈
A|n〉〈m|

〉〉〉

R|pt−pt = i
∑

q

Gq

√
n + 1

〈〈〈
A|n + 1〉〈m|dq

〉〉〉

R ei(ω0−ωq)t (A.64)

+i
∑

q

Gq

√
n
〈〈〈
A|n − 1〉〈m|d†q

〉〉〉

R e−i(ω0−ωq)t

+i
∑

q

Gq

√
m + 1

〈〈〈
A|n〉〈m + 1|d†q

〉〉〉

R e−i(ω0−ωq)t

+i
∑

q

Gq

√
m
〈〈〈
A|n〉〈m − 1|dq

〉〉〉

R ei(ω0−ωq)t.

Now, the dissipative photon mode assisted quantities must be calculated, to derive the set
of equation up to the second order in the tunneling matrix couling element. They read:

∂t

〈〈〈
A|n〉〈m|dq

〉〉〉

R|pt−pt = i
∑

q′

Gq′
√

n
〈〈〈
A|n − 1〉〈m|d†q′dq

〉〉〉

R e−i(ω0−ωq′)t (A.65)

−i
∑

q′

Gq′
√

m + 1
〈〈〈
A|n〉〈m + 1|

〉〉〉

R e−i(ω0−ωq′)tδq,q′

−i
∑

q

Gq

√
m + 1

〈〈〈
A|n〉〈m + 1|d†q′dq

〉〉〉

R e−i(ω0−ωq′)t

≈ −iGq

√
m + 1

〈〈〈
A|n〉〈m + 1|

〉〉〉

R e−i(ω0−ωq)t.

Contributions proportional to
〈〈〈
d
(†)
q d

(†)
q′

〉〉〉
are neglected within the bath assumption, since

only dissipative are taken into account. The bath photon do not couple back into the
cavity. The mean photon number is too low in the bath to consider a tunnel process in
the reversed direction. The phase-relation is the same for the inhomogeneities, since this
contributions reflects one part of the two part density matrix process for the cavity loss,
the other one reads:

∂t

〈〈〈
A|n〉〈m|d†q

〉〉〉

R|pt−pt ≈ iGq

√
n + 1

〈〈〈
A|n + 1〉〈m|

〉〉〉

R ei(ω0−ωq)t. (A.66)

Now, the equation is solved by integrating formally and applying the Markovian approxi-
mation, assuming memory effects are negligible, which is a good approximation in system-
bath processes, with coupling strength suggesting interaction time higher than ps-scale.
The tunnel coupling strength is weak enough and the solution reads:

〈〈〈
A|n〉〈m|d†q

〉〉〉

R(t)|pt−pt ≈ iGq

√
n + 1

〈〈〈
A|n + 1〉〈m|

〉〉〉

R

∫ ∞

0
dτ ei(ω0−ωq)(t−τ) (A.67)

= iGq

√
n + 1

〈〈〈
A|n + 1〉〈m|

〉〉〉

R ei(ω0−ωq)t

∫ ∞

0
dτ e−i(ω0−ωq)τ .

If the lower limit is not extended from 0 to −∞, the integral is the Heitler-Zeta function
ζ(ω0 − ωq), consisting of the delta-function and of the Cauchy-principal value integral.
It must be checked, to what extent the Cauchy-principal vaule integral contributes to
the dynamics, normally a energy renormalization occurs, which can be included into the
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definition of ω0. In Eq. (A.65), several combinations of dissipative photon mode assisted
quantities need to be calculated like in Eq. (4.60). They read:

〈〈〈
A|n + 1〉〈m|dq

〉〉〉

R = −i Gq

√
m + 1

〈〈〈
A|n + 1〉〈m + 1|

〉〉〉

R e−i(ω0−ωq)tζ(ω0 − ωq)(A.68)
〈〈〈
A|n − 1〉〈m|d†q

〉〉〉

R = i Gq

√
n
〈〈〈
A|n〉〈m|

〉〉〉

R ei(ω0−ωq)tζ(ω0 − ωq)
〈〈〈
A|n〉〈m − 1|dq

〉〉〉

R = −i Gq

√
m
〈〈〈
A|n〉〈m|

〉〉〉

R e−i(ω0−ωq)tζ(ω0 − ωq)
〈〈〈
A|n〉〈m + 1|d†q

〉〉〉

R = i Gq

√
n
〈〈〈
A|n + 1〉〈m + 1|

〉〉〉

R ei(ω0−ωq)tζ(ω0 − ωq)

These solutions can be plug into the Eq. (A.65) to derive the cavity-loss for the general
quantity

〈〈〈
A|n〉〈m|

〉〉〉
, by defining:

κ :=
∑

q

|Gq|2 ζ(ω0 − ωq), (A.69)

the PPCE formulation of the Markovian cavity loss, including energy renormalization is
derived and can be expressed as:

∂t

〈〈〈
|n〉〈m|A

〉〉〉

R|ph−ph = −(m + n)κ
〈〈〈
|n〉〈m|A

〉〉〉

+2
√

m + 1
√

n + 1κ
〈〈〈
|n + 1〉〈m + 1|A

〉〉〉
. (A.70)

In the PPCE formalism, the dynamics of the photon loss describes the loss and gain of
photons of the different photon probabilities self-consistently. The dynamics of the pho-
ton probabilities are easier in the electron-photon interaction, but more complicated for
the photon-loss, since inscattering from higher order photon probabilities need to be con-
sidered. Therefore, the cavity loss appears more complicated than in the picture of the
c†, c-operators. To give an example, one chooses in Eq. (4.62) the photon-assisted transi-
tion. The equation reads, only for the photon-photon interaction:

∂t

〈〈〈
a†vac|n + 1〉〈n|

〉〉〉

R = −(2n + 1)κ
〈〈〈
a†vac|n + 1〉〈n|

〉〉〉

R + 2
√

n + 1
√

n + 2κ
〈〈〈
a†vac|n + 2〉〈n + 1|

〉〉〉

R.

To transform Eq. (A.71) into the operator formalism, one multiplies, e.g. with
√

n + 1, and
sums over n:

∑

n

√
n + 1∂t

〈〈〈
a†vac|n + 1〉〈n|

〉〉〉

R =
∑

n

∂t

〈〈〈
a†vac|n〉〈n|

〉〉〉

R = ∂t

〈〈〈
a†vacc

†
〉〉〉

R

−
∑

n

√
n + 1(2n + 1)κ

〈〈〈
a†vac|n + 1〉〈n|

〉〉〉

R = −κ
〈〈〈
a†vacc

†
〉〉〉

R − 2κ
〈〈〈
a†vacc

†c†c
〉〉〉

∑

n

2
√

n + 1
√

n + 2κ
〈〈〈
a†vac|n + 2〉〈n + 1|

〉〉〉

R = 2κ
〈〈〈
a†vacc

†c†c
〉〉〉

R.

Only with the inscattering of photons from higher photon-probabilities in case of losses,
the usual cavity loss can be derived, since Eq. (A.71) reads now:

∂t

〈〈〈
a†vacc

†
〉〉〉

R = −κ
〈〈〈
a†vacc

†
〉〉〉

R. (A.71)

The last equation has been derived to clarify the processes, which do not appear in the
operator-formalism, that the photon-probability approach opens up further insight into
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the combined electron-photon dynamics, even in the case of the Markovian-derived cavity
loss. The few-electron approach, i.e. the need to factorize in the electronic system, does
not enter in this derivation of the cavity loss, since the cavity loss results solely from the
photon-photon interaction.
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WRI02 Wilson-Rae, I. ; Imamoǧlu, A.: Quantum dot cavity-QED in the presence
of strong electron-phonon interactions. In: Phys. Rev. B 65 (2002), May, Nr.
23, S. 235311

WSS
+
09 Warming, T. ; Siebert, E. ; Schliwa, A. ; Stock, E. ; Zimmermann, R.

; Bimberg, D.: Hole-hole and electron-hole exchange interactions in single
InAs/GaAs quantum dots. In: Phys. Rev. B 79 (2009), Mar, Nr. 12, S. 125316

WVT
+
09 Winger, Martin ; Volz, Thomas ; Tarel, Guillaume ; Portolan, Stefano

; Badolato, Antonio ; Hennessy, Kevin J. ; Hu, Evelyn L. ; Beveratos,
Alexios ; Finley, Jonathan ; Savona, Vincenzo ; Imamoglu, Atac: Ex-
planation of Photon Correlations in the Far-Off-Resonance Optical Emission
from a Quantum-Dot–Cavity System. In: Phys. Rev. Lett. 103 (2009), Nov,
Nr. 20, S. 207403

YC05 Yu, Peter Y. ; Cardona, Manuel: Fundamentals of Semiconductors. Berlin
: Springer, 2005

YKS
+
02 Yuan, Zhiliang ; Kardynal, Beata E. ; Stevenson, R. M. ; Shields.,

Andrew J. ; Lob, Charlene J. ; Cooper, Ken ; Beattie, Neil S. ; Ritchie,
David A. ; Pepper, Michael: Electrically Driven Single-Photon Source. In:
Science 295 (2002), Nr. 5552, S. 102–105

YSH
+
04 Yoshie, T. ; Scherer, A. ; Hendrickson, J. ; Khitrova, G. ; Gibbs,

H. M. ; Rupper, G. ; Ell, C. ; Shchekin, O. B. ; Deppe, D. G.: Vacuum
Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
In: Nature 432 (2004), S. 200–203

YTC00 Yamamoto, Yoshihisa ; Tassone, Francesco ; Cao, Hui: Semiconductor
Cavity Quantum Electrodynamics. Bd. 169. Berlin : Springer Tracts in Mod-
ern Physics, 2000

xxix



Bibliography

xxx



Bibliography

Danksagung

Ich danke Prof. Andreas Knorr für sein Vertrauen, seine Unterstützung und Ermutigungen
und dafür, meinen verschiedenen Projekten so viel Aufmerksamkeit gewidmet zu haben,
dass sie in dieser kurzen Zeit gelingen konnten. Ich danke in diesem Sinne ebenfalls Dr.
Marten Richter, der mir mit Rat und Tat bei allen Problemen zur Seite gestanden hat
und ohne den diese vorliegende Arbeit ebenfalls gar nicht möglich gewesen wäre, sowie der
gesamten Arbeitsgruppe Knorr für die freundliche, interessante und inspirierende Arbeits-
atmosphäre.

Mein Dank geht auch an Prof. Torsten Meier für die Übernahme des Zweitgutachters
sowie an Prof. Michael Kneissl, dass er den Prüfungsvorsitz übernommen hat.

Ich danke Prof. Weng W. Chow für die zahlreichen fruchtbaren Diskussion hier in Berlin
und in Albuquerque, wo er zusammen mit Prof. Andreas Knorr Julia Kabuss und mir einen
einmonatigen Forschungsaufenthalt ermöglicht hat.

Für das Korrekturlesen und die unermüdliche Bereitschaft, wissenschaftliche Diskussionen
zu führen, seien Marten Richter, Frank Milde, Carsten Weber, Matthias-Rene Dachner,
Mario Schoth, Yumian Su, Christina Pöltl und vor allem Julia Kabuss gedankt. Unzählige
Male habt ihr mir geholfen und euch für meine Fragen Zeit genommen. In diesem Sinne
danke ich auch Jeong-Eun Kim und Ermin Malic für ihre Freundlichkeit und Verlässlichkeit.

Matthias-Rene Dachner danke ich für die temperaturabhängigen T1-Zeiten für das Ver-
schränkungsprojekt und zusammen mit Alexander Wilms für die Kaffeemaschine, deren
Kaffee mich über so manche müde Stunde gerettet hat. An Mario Schoth geht mein Dank
dafür, dass er das NLPF-Projekt so erfolgreich übernommen hat.

Meinen Eltern möchte ich herzlich danken, dass sie mir dieses wunderbare Studium mit
seinen Irrungen und Wirrungen ermöglicht haben und nicht ein einziges Mal an meiner
wissenschaftlichen Ernsthaftigkeit und meinem Wissensdurst zweifelten. Und vor allen an-
deren danke ich meiner lieben Julia, dafür, dass sie so ist, wie sie ist, für dieses gemeinsame
Leben, das ich mir gar nicht schöner vorstellen kann.

xxxi


