

Quantum optics in many-body physics: Quantum feedback, optomechanical quantum nonlinearities, and disorder protected edge states

Alexander Carmele Technische Universität Berlin, Germany

Per lin

Outline

- Motivation: Environment induced enabling features
- Example (i): using *phonons* in non-classical optomechanics via strong coupling to a Rydberg superatom
- Example (ii): using *cavity loss* to stabilize Rabi oscillations via quantum feedback of structured continuum
- Example (iii): using *disorder* (inhomogeneous coupling) to protect Majorana edge modes against decoherence
- Conclusion

- Protect against dissipation
- or use dissipation

Environment induced enabling features

maximally entangled two-qubit state due to radiative dephasing

Lin et al, Nature 504, 415 (2013)

Topology by dissipation (particle loss)

S. Diehl et al, Nat. Phys. 7, 971 (2011)

Feedback stabilized single photon states

X. Zhou et al, PRL 108, 243602 (2012)

Phonon induced anti-bunching

A. Carmele et al, PRL 104, 156801 (2010)

Nanomechanics Strongly Coupled to a Rydberg Superatom

A. Carmele, B. Vogell, K. Stannigel, and P. Zoller

A. Carmele et al, New J. Phys. 16, 63042 (2014)

Cavity optomechanics

- □ Radiation pressure Hamiltonian
- □ Small coupling (less than kHz) for membranes

$$\hbar\omega_{\rm cav}(x)\hat{a}^{\dagger}\hat{a} \approx \hbar(\omega_{\rm cav} - G\hat{x})\hat{a}^{\dagger}\hat{a}$$
$$\hat{H}_{\rm int} = -\hbar g_0 \hat{a}^{\dagger}\hat{a}(\hat{b} + \hat{b}^{\dagger})$$

Cavity optomechanics – laser driven

Aspelmeyer et al, arXiv:1303.0733

□ the cavity is driven by a laser → cavity mode is deplaced
 □ Radiation pressure Hamiltonian can be linearized → enhanced coupling

$$\hat{a} = \bar{\alpha} + \delta \hat{a}$$
$$\hat{H}_{int} = -\hbar g_0 (\bar{\alpha} + \delta \hat{a})^{\dagger} (\bar{\alpha} + \delta \hat{a}) (\hat{b} + \hat{b}^{\dagger})$$

Cavity optomechanics: New challenges

- experiments so far in the linear regime
- nonlinearity necessary to create entanglement to use optomechanics for quantum information processing

Nanomechanics Coupled to a Nonlinearity: Solid-state realization

- Semiconductor beam (GaAs) with a quantum dot
- ❑ NV- defect center in all-diamond doubly clamped beam
- ☐ Intrinsic two-level defects in the mechanical oscillator

PRB 88, 64105 (2013)

Our proposal: use a Rydberg superatom as the nonlinearity in a hybrid system

PRL 92, 75507 (2004)

Rydberg Superatom as an artificial atom

- □ An atomic ensemble with a Rydberg state interacts strongly due to the VdW interaction \rightarrow Rydberg shift
- Rydberg shift leads to the Rydberg blockade mechanism
- □ Coupling to the light field is increased by the collective enhancement factor

Hoffmann et al, PRL 110, 203601 (2013); Löw et al, J. Phys. B 45, 113001 (2012)

Nanomechanics Coupled to a Nonlinearity: Hybrid system realization

- □ use a Rydberg superatom as two-level system
- □ collective enhancement allows for strong coupling
- □ Superatom can be pumped, quenched, and can easily be read out

And a modular setup is possible

UHV

Cyrogenic environment

Principle setup without dissipation processes

$$\begin{aligned} H_{\text{int}} &= G\left(a^{\dagger}b + b^{\dagger}a\right) + \sum_{i=1}^{N} \left(g_{i} \ a \left|e_{i}\right\rangle \langle g_{i}\right| + \Omega e^{-i\omega_{L}t} \left|r_{i}\right\rangle \langle e_{i}\right|\right) + \text{h.c.} \\ &+ \sum_{\substack{i,j=1\\j>i}}^{N} \Delta_{R}^{ij} \left|r_{i}r_{j}\right\rangle \langle r_{i}r_{j}\right| + \text{h.c.} \end{aligned}$$

A. Carmele et al, New J. Phys. 16, 63042 (2014)

Cavity – mediated membrane – Rydberg superatom coupling

□ Major obstacles: Dissipation during the excitation transfer

□ Phonon decoherence and radiative decay from Rydberg state few kHz

□ But: photon leakage and radiative decay from intermediate state MHz

Cavity photons and intermediate excited states are detuned from the coherent interaction

Strong coupling limit is accessible:

The cavity loss and radiative decay of the intermediate state are suppressed and an effective two-level dynamics take place

preparation of non-classical states even at finite temperatures.

Fidelity for the individual state transfer:

$$\mathscr{F} \approx 1 - \frac{\pi}{2G_{\text{eff}}} \left(4N_m \gamma_m + \gamma_m + \Gamma_r^{\text{eff}} + \Gamma_r \right)$$

A. Carmele et al, New J. Phys. 16, 63042 (2014)

Pseudo photon path representation of quantum feedback

J. Kabuss, K. Stannigel, D. Krimer, S. Rotter, A. Knorr, and A. Carmele

J. Kabuss et al, in preparation (2015)

Non-invasive Feedback used in semiclassical limit (Lang-Kobayashi)

Control of quantum state by shaping the environment

Here, Rabi oscillations are recovered in the weak coupling limit

Exchange of cavity- with waveguide photons

$$\begin{split} H/\hbar &= -M \left(\sigma^{-}a^{\dagger} + \sigma^{+}a \right) \\ &- \int \mathrm{d}k \; G(k,t) \; a^{\dagger}d_{k} + G^{*}(k,t) \; d_{k}^{\dagger}a, \\ G(k) &= G \sin(kL) \\ \\ \text{Single photon limit:} \\ (\text{emitter prepared initially in excited state}) \\ &|\Psi\rangle &= c_{e} \left| e, 0, \left\{ 0 \right\} \right\rangle + c_{g} \left| g, 1, \left\{ 0 \right\} \right\rangle \\ &+ \int \mathrm{d}k \; c_{g,k} \left| g, 0, \left\{ k \right\} \right\rangle \end{split}$$

SPIE.

Solution via Laplace-transformation:

$$s c_e(s) = 1 + i M c_g(s)$$

$$s c_g(s) = i M c_e(s) - \kappa c_g(s) + \kappa c_g(s) e^{-(s - i\omega_0)\tau}$$

Dynamics with and without feedback

$$t \leq \tau$$
: $c_g(t) = i \frac{\sin\left[\sqrt{1 - (\kappa/2M)^2} M t\right]}{\sqrt{1 - (\kappa/2M)^2}} e^{-\kappa/2 t}$ altered Rabi-frequency

$$t \ge \tau : \qquad c_g(t) = \frac{i}{2} \sum_{n=0}^{\infty} n! 2^{n+1} e^{-\kappa/2(t-n\tau)+i\omega_0 n\tau} \Theta(t-n\tau) \times \\ \sum_{k=0}^{n} \frac{(-1)^k}{k!(n-k)!} \frac{[\kappa/2(t-n\tau)]^{n+1+k}}{(n+1+k)!}$$

 $\int d\omega \, \frac{G^2(\omega)}{s - i\omega}$

System of equations in the Laplace domain:

$$\begin{pmatrix} c_e(0) \\ c_g(0) \end{pmatrix} = s \left[1 - \mathbb{L} \right] \begin{pmatrix} c_e(s) \\ c_g(s) \end{pmatrix} \quad \mathbb{L} = \begin{pmatrix} 0 & i\frac{M}{s} \\ i\frac{M}{s} & -\frac{\kappa}{s} \left(e^{-\tau s} - 1 \right) \end{pmatrix}$$

von Neumann series reveals scattering matrix:

$$\begin{pmatrix} c_e(s) \\ c_g(s) \end{pmatrix} = \frac{1}{s} \sum_{n=0}^{\infty} \mathbb{L}^n \begin{pmatrix} c_e(0) \\ c_g(0) \end{pmatrix}$$

$$= \sum_{n=0}^{\infty} \left[\frac{(iM)^n}{s^{n+1}} \begin{pmatrix} 0 & 1 \\ 1 & \frac{\kappa}{iM} (e^{-\tau s} - 1) \end{pmatrix}^n \right] \begin{pmatrix} c_e(0) \\ c_g(0) \end{pmatrix}$$

Single events per time step: emission/absorption of photons

Stabilized Rabi oscillations after a couple roundtrips – destructive interference complete

Calculate the long time limit without transient effects:

$$c_g^{(i)}(t) = \frac{1}{2\pi i} \oint ds \ c_g(s) \ e^{st} = \sum_{\text{Poles}} \text{Res} \left[c_g(s) e^{st} \right]$$

$$c_g^{(i)}(t) = \frac{i \sin[Mt]}{1 + \kappa n \pi/M} \quad \text{clean coupling element}$$

$$c_g^{(i)}(t) = \frac{i \sin[Mt]}{1 + \kappa (2n+1)\pi/2M}$$

Stabilizing Majorana edge modes against symmetry-breaking losses via disorder

A. Carmele, C. Kraus, M. Dalmonte, M. Heyl, and P. Zoller

A. Carmele et al, in preparation (2015)

Goal: store and protect quantum states in Majorana edge states even in the presence of symmetry breaking losses

Ideal case:

$$H_{\rm K} = -\sum_{l=1}^{N-1} \left[\left(J_l \ c_l^{\dagger} c_{l+1} - \Delta_l \ c_l c_{l+1} \right) + \text{h.c.} \right] + \mu \sum_{l=1}^{N} c_l^{\dagger} c_l$$

Symmetry breaking next-neighbor interaction

$$H = H_{\rm K} + V, \quad V = U \sum_{l=1}^{N-1} \left[n_l - \frac{1}{2} \right] \left[n_{l+1} - \frac{1}{2} \right]$$

Particle loss:

$$\partial_t \rho = -\frac{i}{\hbar} \left[H, \rho \right] + \sum_{l=1}^N \kappa_l \left[c_l \rho c_l^{\dagger} - \frac{1}{2} \left\{ c_l^{\dagger} c_l, \rho \right\} \right]$$

Figure of merit: Survival time of the edge-edge correlation

$$\theta = \langle \psi_0 | \Theta | \psi_0 \rangle = 1, \ \Theta = i \left(c_1 + c_1^{\dagger} \right) \left(c_N - c_N^{\dagger} \right)$$

Edge-edge correlation equals 1 in an initally half-filled chain

Number of protected sites protects the edge-edge correlation – protection time scales exponentially with number of protected sites

berlin

Switching on disorder in the tunneling coupling leads to strongly changed decay dynamics – stretched exponential

Disorder protects edge states from symmetry breaking interaction and particle loss by "increasing" the path length to a dissipating site Conclusion

5

t Geff

6

- Example (i): using *phonons* in non-classical optomechanics via strong coupling to a Rydberg superatom
- Example (ii): using *cavity loss* to stabilize Rabi oscillations via quantum feedback of structured continuum
- Example (iii): using *disorder* (inhomogeneous coupling) to protect Majorana edge modes against decoherence

2 3

